

Mathematics 2201 Final Examination

Answer Key

Teacher's Name:		Student's Name:	
		Teacher Grading Sheet (PART I)	
1.	С	21. B	
2.	D	22. B	
3.	В	23. C	
4.	В	24. A	
5.	В	25. D	
6.	С	26. C	
7.	В	27. C	
8.	С	28. B	
9.	А	29. D	
10.	В	30. C	
11.	D	31. B	
12.	В	32. C	
13.	D	33. C	
14.	А	34. C	
15.	В	35. C	
16.	В	36. C	
17.	С	37. B	
18.	С	38. D	
19.	С	39. D	
20.	А	40. C	

SECTION II

Total Value: 40 Marks

Answer ALL items in the space provided. Show ALL workings.

Value

3 41. Prove deductively the sum of six consecutive positive numbers is a multiple of three.

x + (x + 1) + (x + 2) + (x + 3) + (x + 4) + (x + 5)= 6x + 15= 3(2x + 5)

3 42. Given: $\overline{AC} = \overline{EC}$ $\overline{BC} = \overline{DC}$

Prove: $\triangle ABC \cong \triangle EDC$

Statements	Reason
$\overline{AC} = \overline{EC}$	Given
$\overline{BC} = \overline{DC}$	Given
$\angle ACB = \angle ECD$	Vertically Opposite Angles are \cong
$\Delta ABC \cong \Delta EDC$	SAS

2 43. Determine the value of x.

 $2x + 6 + x - 3 = 180^{\circ}$ $3x + 3 = 180^{\circ}$ $3x = 177^{\circ}$ $x = 59^{\circ}$

2 44. A) A telephone pole is supported by two wires on opposite sides. At the top of the pole, the wires meet to form an angle of 50°. On the ground, the ends of the wires are 20 ft apart. Wire B make a 45° angle with the ground. What is the length of wire A?

$$\frac{\sin 50^{\circ}}{20} = \frac{\sin 45^{\circ}}{x}$$

$$x \sin 50^{\circ} = 20 \sin 45^{\circ}$$

$$x = \frac{20 \sin 45^{\circ}}{\sin 50^{\circ}}$$

$$x = 18.46 ft$$
Wire A
Wire B

2

Find the values of angle θ to the nearest degree.

$$\theta = 42.8^{\circ} = 43^{\circ}$$

B)

2 45. Solve:
$$\sqrt{2x-1} = 5$$

 $\sqrt{2x-1} = 5$
 $(\sqrt{2x-1})^2 = (5)^2$
 $2x - 1 = 25$
 $2x - 1 + 1 = 25 + 1$
 $2x = 26$

$$x = 13$$

2 46. Simplify: $(\sqrt{3} + \sqrt{2})^2$

$$(\sqrt{3} + \sqrt{2})^{2}$$
$$(\sqrt{3} + \sqrt{2})(\sqrt{3} + \sqrt{2})$$
$$3 + \sqrt{3}\sqrt{2} + \sqrt{3} + \sqrt{2} + 2$$
$$3 + 2\sqrt{3}\sqrt{2} + 2$$
$$5 + 2\sqrt{6}$$

3 47. A dog kennel has an area of $15\sqrt{2}$ m², and a width of $\sqrt{6}$ m. Determine the perimeter of the dog kennel in simplest form, using exact values.

$$L = \frac{A}{W} \qquad P = 2L + 2W$$

$$L = \frac{15\sqrt{2}}{\sqrt{6}} \times \frac{\sqrt{6}}{\sqrt{6}} \qquad P = 2(5\sqrt{3}) + 2(\sqrt{6})$$

$$P = 10\sqrt{3} + 2\sqrt{6}$$

$$L = \frac{15\sqrt{12}}{6}$$

$$L = \frac{5\sqrt{12}}{2}$$

$$L = \frac{10\sqrt{3}}{2}$$

$$L = 5\sqrt{3}$$

- 48. The mean life of Brand A batteries is 160 hours with a standard deviation of 20 hours.
- A) Determine the z-score of a battery that lasted 170 hours.

2

1

1

1

A)

$$z = \frac{170 - 160}{20} = +0.50$$

B) Using z-scores, what percent of the batteries will last less than 170 hours?69.15% of the batteries will last up to 170 hours.

49. The results of a math unit test are normally distributed with a mean score of 76 and a standard deviation of 7.

Draw and label the normal curve to represent this data.

B) What percent of the student scored between 62 and 83?
 13.5% + 34% + 34% = 81.5%

³ 50. Bob kicked a beach ball into the air. After 3 seconds, the ball reached a maximum height of 5 m. If the ball was in the air for 6 seconds before it landed, determine the quadratic function that describes the path of the beach ball.

3 51. What is the vertex of y = 3(x - 2)(x + 10)?

Roots: x - 2 = 0 x = 2 $\frac{2 + (-10)}{2} = -\frac{8}{2} = -4$ x + 10 = 0 x = -10

y-coordinate

$$y = 3(-4 - 2)(-4 + 10)$$

$$y = 3(-6)(6)$$

$$y = -108$$

Therefore the vertex is (-4, -108)

³ 52. The sum of the squares of two positive consecutive integers is 113. What are the two integers?

$$x^{2} + (x + 1)^{2} = 113$$

$$x^{2} + (x^{2} + 2x + 1) = 113$$

$$2x^{2} + 2x - 112 = 0$$

$$2(x^{2} + x - 56) = 0$$

$$2(x + 8)(x - 7) = 0$$

$$x + 8 = 0$$

$$x - 7 = 0$$

$$x = -8 \text{ (Reject)}$$

If $x = 7 \text{ then } x + 1 = 8$
Therefore the two
consecutive integers
are 7 and 8.

3 53. Find the zeros of $y = 9x^2 - 6x - 1$.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(9)(-1)}}{2(9)}$$

$$x = \frac{6 \pm \sqrt{36 + 36}}{18}$$

$$x = \frac{6 \pm \sqrt{72}}{18}$$

$$x = \frac{6 \pm 6\sqrt{2}}{18}$$

$$x = \frac{1 \pm \sqrt{2}}{3}$$

Teachers may accept decimal approximate equivalents

2 54. The floor plan has a scale of 1 unit = 12 inches. The owner intends to use 6 inch by 6 inch square tiles to cover the floor of the bathroom. Tiles cost \$0.99 each. What is the total cost of the tiles?

 $length = 8 \times 2 = 16$ width = 6 × 2 = 12

16 × 12 = 192 tiles 192 *tiles* × \$0.99 = \$190.08

2 55. An underground storage tank is used to collect storm water.

A new tank is needed with a volume of 8 times the present tank. Determine the dimensions of the new tank if every side is enlarged by the same factor.

volume of orginal tank = $60 \text{ m} \times 30 \text{ m} \times 90 \text{ m}$ volume of orginal tank = $162 \ 000 \ \text{m}^3$

volume of new tank = $8 \times 162\ 000\ m^3$ volume of orginal tank = $1\ 296\ 000\ m^3$

$$k^{3} = \frac{volume \ of \ similar \ object}{volume \ of \ orginal \ object} = \frac{1\ 296\ 000\ m^{3}}{162\ 000\ m^{3}} = 8$$

Therefore the scale factor (*k*) is 2

New Dimensions: $60m \times 120m \times 180m$