	Mathematics 2201 Final Examination
	Answer Key
Teacher's Name:	___ Student's Name: _
	Teacher Grading Sheet (PART I)
1. C	21. B
2. D	22. B
3. B	23. C
4. B	24. A
5. B	25. D
6. C	26. C
7. B	27. C
8. C	28. B
9. A	29. D
10. B	30. C
11. D	31. B
12. B	32. C
13. D	33. C
14. A	34. C
15. B	35. C
16. B	36. C
17. C	37. B
18. C	38. D
19. C	39. D
20. A	40. C

SECTION II

Total Value: 40 Marks

Answer ALL items in the space provided. Show ALL workings.

Value

3
41. Prove deductively the sum of six consecutive positive numbers is a multiple of three.

$$
\begin{aligned}
& x+(x+1)+(x+2)+(x+3)+(x+4)+(x+5) \\
& =6 x+15 \\
& =3(2 x+5)
\end{aligned}
$$

42. Given: $\overline{A C}=\overline{E C}$ $\overline{B C}=\overline{D C}$

Prove: $\triangle A B C \cong \triangle E D C$

Statements	Reason
$\overline{\boldsymbol{A C}}=\overline{\boldsymbol{E C}}$	Given
$\overline{B C}=\overline{\boldsymbol{D C}}$	Given
$\angle A C B=\angle E C D$	Vertically Opposite Angles are \cong
$\triangle A B C \cong \triangle E D C$	SAS

2
43. Determine the value of x.

$$
\begin{gathered}
2 x+6+x-3=180^{\circ} \\
3 x+3=180^{\circ} \\
3 x=177^{\circ} \\
x=59^{\circ}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{\sin 50^{\circ}}{20}=\frac{\sin 45^{\circ}}{x} \\
& x \sin 50^{\circ}=20 \sin 45^{\circ} \\
& x=\frac{20 \sin 45^{\circ}}{\sin 50^{\circ}} \\
& x=18.46 \mathrm{ft}
\end{aligned}
$$

$$
\text { B) Find the values of angle } \theta \text { to the nearest degree. }
$$

$$
\begin{gathered}
\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 c b} \\
\cos \theta=\frac{34^{2}+13^{2}-26^{2}}{2(34)(13)}
\end{gathered}
$$

$$
\theta=42.8^{\circ}=43^{\circ}
$$

45. Solve: $\sqrt{2 x-1}=5$

$$
\begin{aligned}
& \sqrt{2 x-1}=5 \\
& (\sqrt{2 x-1})^{2}=(5)^{2} \\
& 2 x-1=25 \\
& 2 x-1+1=25+1 \\
& 2 x=26 \\
& x=13
\end{aligned}
$$

46. Simplify: $\quad(\sqrt{3}+\sqrt{2})^{2}$

$$
\begin{aligned}
& (\sqrt{3}+\sqrt{2})^{2} \\
& (\sqrt{3}+\sqrt{2})(\sqrt{3}+\sqrt{2}) \\
& 3+\sqrt{3} \sqrt{2}+\sqrt{3}+\sqrt{2}+2 \\
& 3+2 \sqrt{3} \sqrt{2}+2 \\
& 5+2 \sqrt{6}
\end{aligned}
$$

47. A dog kennel has an area of $15 \sqrt{2} \mathrm{~m}^{2}$, and a width of $\sqrt{6} \mathrm{~m}$. Determine the perimeter of the dog kennel in simplest form, using exact values.

$L=\frac{A}{W}$
$L=\frac{15 \sqrt{2}}{\sqrt{6}} \times \frac{\sqrt{6}}{\sqrt{6}}$
$L=\frac{15 \sqrt{12}}{6}$
$L=\frac{5 \sqrt{12}}{2}$
$L=\frac{10 \sqrt{3}}{2}$
$L=5 \sqrt{3}$
48. The mean life of Brand A batteries is 160 hours with a standard deviation of 20 hours.

B) What percent of the student scored between 62 and 83 ?

$$
13.5 \%+34 \%+34 \%=81.5 \%
$$

A) Determine the z-score of a battery that lasted 170 hours.

$$
z=\frac{170-160}{20}=+0.50
$$

B) Using z-scores, what percent of the batteries will last less than 170 hours?
69.15% of the batteries will last up to 170 hours.
49. The results of a math unit test are normally distributed with a mean score of 76 and a standard deviation of 7 .
A) Draw and label the normal curve to represent this data.
50. Bob kicked a beach ball into the air. After 3 seconds, the ball reached a maximum height of 5 m . If the ball was in the air for 6 seconds before it landed, determine the quadratic function that describes the path of the beach ball.

$$
\begin{aligned}
& (h, k)=(3,5) \\
& y=a(x-h)^{2}+k \\
& 0=a(6-3)^{2}+5 \\
& -\frac{5}{9}=a \\
& y=-\frac{5}{9}(x-3)^{2}+5
\end{aligned}
$$

51. What is the vertex of $y=3(x-2)(x+10)$?

Roots:

$$
\begin{aligned}
x-2 & =0 \\
x & =2 \\
x+10 & =0 \\
x & =-10
\end{aligned}
$$

y-coordinate

$$
\begin{aligned}
& y=3(-4-2)(-4+10) \\
& y=3(-6)(6) \\
& y=-108
\end{aligned}
$$

Therefore the vertex is $(-4,-108)$
52. The sum of the squares of two positive consecutive integers is 113 . What are the two integers?

$$
\begin{aligned}
& x^{2}+(x+1)^{2}=113 \\
& x^{2}+\left(x^{2}+2 x+1\right)=113 \\
& 2 x^{2}+2 x-112=0 \\
& 2\left(x^{2}+x-56\right)=0 \\
& 2(x+8)(x-7)=0 \\
& \\
& x+8=0 \\
& x=-8 \text { (Reject) } \quad x-7=0 \\
& x=7
\end{aligned}
$$

If $x=7$ then $x+1=$
8
Therefore the two consecutive integers are 7 and 8.
53. Find the zeros of $y=9 x^{2}-6 x-1$.

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(-6) \pm \sqrt{(-6)^{2}-4(9)(-1)}}{2(9)} \\
& x=\frac{6 \pm \sqrt{36+36}}{18} \\
& x=\frac{6 \pm \sqrt{72}}{18} \\
& x=\frac{6 \pm 6 \sqrt{2}}{18} \\
& x=\frac{1 \pm \sqrt{2}}{3}
\end{aligned}
$$

Teachers may accept decimal approximate equivalents
54. The floor plan has a scale of 1 unit = 12 inches. The owner intends to use 6 inch by 6 inch square tiles to cover the floor of the bathroom. Tiles cost $\$ 0.99$ each. What is the total cost of the tiles?

$\begin{aligned} & \text { length }=8 \times 2=16 \\ & \text { width }=6 \times 2=12\end{aligned}$
$16 \times 12=192$ tiles
192 tiles $\times \$ 0.99=\$ 190.08$
55. An underground storage tank is used to collect storm water.

30 m
A new tank is needed with a volume of 8 times the present tank. Determine the dimensions of the new tank if every side is enlarged by the same factor.

$$
\begin{aligned}
& \begin{array}{l}
\text { volume of orginal tank }=60 \mathrm{~m} \times 30 \mathrm{~m} \times 90 \mathrm{~m} \\
\text { volume of orginal tank }=162000 \mathrm{~m}^{3} \\
\text { volume of new tank }=8 \times 162000 \mathrm{~m}^{3} \\
\text { volume of orginal tank }=1296000 \mathrm{~m}^{3} \\
k^{3}=\frac{\text { volume of similar object }}{\text { volume of orginal object }}=\frac{1296000 \mathrm{~m}^{3}}{162000 \mathrm{~m}^{3}}=8
\end{array}
\end{aligned}
$$

Therefore the scale factor (k) is 2

New Dimensions: $60 \mathrm{~m} \times 120 \mathrm{~m} \times 180 \mathrm{~m}$

