\qquad
Part I: \quad Multiple Choice. Place the correct answer in the corresponding blank at the end of this section.

1. Which is a good referent for 1 inch?
(A) distance from a lightswitch to the floor
(B) distance from the tip of your thumb to the knuckle
(C) thickness of a dime
(D) width of your foot
2. Convert 10 km to the nearest mile?
(A) 2
(C) 11
(D) 16

3. Elijah has 25 yd . of material that he will cut into strips that must be exactly 18 in . wide. How many strips can Elijah make?
(A) 4
(B) 16
(C) 50

$$
25 y d x \frac{36 i n}{110}=900 \text { in }
$$

$$
\frac{900 i n}{18}=50
$$

(D) 138
4. The radius of a golf ball is approximately 20 mm . Determine the surface area of a golf ball to the nearest square mm .
(A) $3768 \mathrm{~mm}^{2}$
(B) $5024 \mathrm{~mm}^{2}$
(C) $33493 \mathrm{~mm}^{2}$
(D) $100480 \mathrm{~mm}^{2}$

$$
\begin{aligned}
S A & =4 \pi r^{2} \\
S A & =4 \pi(20 m)^{2} \\
& =5024 \mathrm{mn} 2
\end{aligned}
$$

5. Determine the volume of this composite object, which is a right square prism and a right rectangular pyramid, to the nearest tenth of a cubic metre.
(A) $18.4 \mathrm{~m}^{3}$
(B) $37.4 \mathrm{~m}^{3}$

6. A square based prism has a volume of $45 \mathrm{ft}^{3}$. What is the volume of a square based pyramid with the same base and height?
(A) $11 \mathrm{ft}^{3}$
(B) $15 \mathrm{ft}^{3}$
(C) $135 \mathrm{ft}^{3}$
$\frac{45 \mathrm{ft}^{3}}{3}=15 \mathrm{ft}^{3}$
(D) $180 \mathrm{ft}^{3}$
7. Determine the surface area of this right cone to the nearest square metre.

8. A sphere has a surface area of $10.1 \mathrm{~m}^{2}$. What is the diameter of the sphere to the nearest tenth of a metre?
(B) 3.6 m
(C) 7.4 m

$$
\frac{10.1}{4 \pi}=\frac{4 \pi r^{2}}{4 \pi}
$$

(D) 9.6 m

$$
S A=4 \pi r^{2}
$$

$$
\sqrt{r^{2}}=\sqrt{0.8}
$$

$$
r=0.89
$$

$$
d=2(.89)=1.8
$$

9. A ball has a radius of 15 cm . What is the volume of the smallest cubical box that will hold the ball?
(A) $422 \mathrm{~cm}^{3}$

$$
d=2(15)=30
$$

(B) $900 \mathrm{~cm}^{3}$
(C) $3375 \mathrm{~cm}^{3}$

$$
V=l \cdot w \cdot h=5 \cdot s \cdot s=s^{3}=(30)^{3}=27000 \mathrm{~cm}^{3}
$$

(D) $27000 \mathrm{~cm}^{3}$
10. A water tank is in the shape of a right circular cylinder with a height of 15 m and a diameter of 8 m . How many square meters of sheet medal was used in its construction?
(A) $477 \mathrm{~m}^{2}$
(B) $754 \mathrm{~m}^{2}$

$$
S A=2 \pi r^{2}+2 \pi r L
$$

(C) $1156 \mathrm{~m}^{2}$
(D) $3014 \mathrm{~m}^{2}$

$$
=2 \pi(4)^{2}+2 \pi(4)(15)
$$

$$
=477
$$

Answers to multiple choice.

1. \qquad 2. \qquad 3. \qquad 4. \qquad 5. \qquad
2. \qquad 7. \qquad 8. \qquad 9. \qquad 10. \qquad
$20 \quad$ Part II: Constructed Response. Answer each question in the space provided. Show all workings.

3 11. Convert 777 inches to yards, feet, and inches.

$$
\begin{aligned}
& 777 \mathrm{in} \times \frac{1 \mathrm{ft}}{12 \mathrm{in}}=64.75 \mathrm{ft} \times \frac{1 \mathrm{yd}}{3 \mathrm{ft}}=21.583 \mathrm{yds} \\
& 0.583 \times 3=1.749 \mathrm{ft} \\
& 0.749 \times 12=9 \mathrm{in} \\
& 21 \mathrm{yds} 1 \mathrm{ft} \text { q in }^{\text {in }}
\end{aligned}
$$

(A) What is the surface area of the pyramid to the nearest cm ${ }^{2}$.

3
(B) Calculate the volume of the pyramid to the nearest cm^{3}.

$$
V=\frac{1}{3} \operatorname{livh}=\frac{1}{3}(10 \mathrm{~cm})(11 \mathrm{~cm})(7 \cdot \cdot \mathrm{~mm})=250 \mathrm{~cm}^{3}
$$

1
(C) What would be the volume of a rectangular prism with the same base area and height?

$$
250 \mathrm{~cm}^{3} \times 3=750 \mathrm{~cm}^{3}
$$ the cable, l, to the nearest centimetre.

$$
\begin{aligned}
& v=\pi r^{2} h \\
& 1250=\pi(4.5)^{2} h \\
& \frac{1250}{\pi\left(4.51^{12}\right.}=h \\
& h=19.6 \sim 20 \mathrm{~cm}
\end{aligned}
$$

14. A spherical scoop of ice cream, as shown, melts into a cone. The sphere had a radius of 4 cm . The cone has a radius of 4 cm and a height of 15 cm . Will the melted ice cream fit into the cone or will it overflow the cone?

$$
\begin{aligned}
& \text { ywis. Cone til verflous. }
\end{aligned}
$$

15. Determine the surface area of this composite object, which is a right cylinder and two right cones, to the nearest square centimetre.

