Math 2200
$\frac{\sin \mathrm{A}}{a}=\frac{\sin \mathrm{B}}{b}=\frac{\sin \mathrm{C}}{c} \quad a^{2}=b^{2}+c^{2}-2 b c \cdot \cos \mathrm{~A} \quad \cos \mathrm{~A}=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$

8 Part I: Multiple Choice. Place the correct answer in the corresponding blank at the end of this section.

1. What is the measure of the reference angle, in degrees, for $\theta=217^{\circ}$ in the graph below?
(A) 37°
(B) 53°
(C) 143°
(D) 217°

2. If $P(5,-8)$ is on the terminal arm of θ, what is the measure of θ, to the nearest degree?
(A) 32
(B) 58
(C) 302
(D) 328
3. Solve for θ, where $0^{\circ} \leq \theta \leq 360^{\circ}: \cos \theta=\frac{\sqrt{3}}{2}$
(A) 30° and 150°
(B) 30° and 210°
(C) 30° and 330°
(D) 30° and 360°
4. What is the exact value of $\sin 210^{\circ}$?
(A) $-\frac{\sqrt{3}}{2}$
(B) $-\frac{1}{2}$
(C)
$\frac{1}{2}$
(D) $\frac{\sqrt{3}}{2}$
5. If $\sin \theta=-0.3746$ and $\tan \theta=-0.4040$, in which quadrant is θ ?
(A) I
(B) II
(C) III
(D) IV
6. If $\angle L=90^{\circ}, \angle \mathrm{M}=30^{\circ}$, and $\overline{\mathrm{LM}}=4 \sqrt{6}$ in $\triangle K L M$, what is the exact length of $\overline{\mathrm{KL}}$?
(A) $2 \sqrt{6}$
(B) $4 \sqrt{2}$
(C) $12 \sqrt{2}$
(D) $8 \sqrt{6}$

7. If $\overline{\mathrm{DE}}=14, \overline{\mathrm{DF}}=17$ and $\angle \mathrm{D}=73^{\circ}$ in $\triangle \mathrm{DEF}$, what is the measure of $\overline{\mathrm{EF}}$, to the nearest tenth?
(A) 18.6
(B) 20.4
(C) 345.96
(D) 416.16

8. If $\angle \mathrm{Y}=22^{\circ}, \overline{\mathrm{WY}}=4.5$ and $\overline{\mathrm{WY}}=\overline{\mathrm{WX}}$, what is the length of $\overline{\mathrm{XY}}$ in $\Delta \mathrm{WXY}$?
(A) 2.4
(B) 4.5
(C) 8.3
(D) 11.1

Answers to multiple choice.

1. \qquad
2.
3.

4.__
5. \qquad
6. \qquad
7. \qquad
8. \qquad

16 Part II: Constructed Response. Answer each question in the space provided. Show all workings.

4
9. Given $\triangle \mathrm{ABC}$, solve for $\angle \mathrm{C}$.

4 10. Determine the exact length of $\overline{\mathrm{BC}}$.

11. Determine the measure of $\angle \mathrm{B}$ to the nearest degree.

