\qquad
Part I: \quad Multiple Choice. Write the correct answer in the space provided at the end of this section.

1. Which describes the graph of $y=-5(x+2)^{2}-3$?

$$
\text { vertex }(-2,-3)
$$

(B) Vertex $(2,-3)$ and opens down.
(C) Vertex $(-2,-3)$ and opens up.
(D) Vertex $(-2,-3)$ and opens down.
2. What is the range of the function shown?
(A) $\{y \mid y \leq 2, y \in R\}$
(B) $\{y \mid y \geq 2, y \in R\}$
(C) $\{y \mid y \leq 3, y \in R\}$
(D) $\{y \mid y \geq 3, y \in R\}$

3. The motion of an arrow shot from a tree is modeled by the equation $h(t)=-5 t^{2}+8 t+3$ What is the initial height of the arrow?
(A) -5
(B) 0
(C) 2
(D)

4. What value of k makes the polynomial $x^{2}+k x+36$ a perfect square?

5. What is the value of \boldsymbol{a} in the function $y=a x^{2}-24 x+12$, if the axis of symmetry for the graph of the function is $x=3$?
(A) $\quad-4$
(B) -3
(C) 3
(D) 4

$$
a=4
$$

6. What is the vertex of $y=x^{2}+4 x+1$
(A) $(-2,-3)$
(B) $(-2,1)$

(C) $(-2,3)$
(D) $(4,1)$

$Y=(x+2)^{2}-3$
7. A quadratic function has a vertex of $(4,-5)$ and opens up. How many x-intercepts does it have?
(A) 0
(B) 1
(C) 2
(D) undefined

8. Which of the graphs will have an equation with the smallest a value when compared to $y=x^{2}$?
(A)

$$
y=a(x-p)^{2}+\sigma
$$

(B)
(C)

(D)

9. Which graph best represents the function $y=(x+2)^{2}-3$?

(B)

(C)

(D)

10. Which graph represents the function $y=a x^{2}-6, a>0$?

$$
(0)-(6)
$$

(B)

(C)

(D)

Answers to multiple choice.

1. \qquad 2. \qquad 3. \qquad 4. \qquad 5. \qquad
2. \qquad 7. \qquad 8. \qquad 9. \qquad 10. \qquad

Part II: Constructed Response. Answer each question in the space provided. Show all workings.
11. A signal flare is fired from ground level and reaches a maximum height of 245 m at a 4 time of 7 s . After travelling for 14 s , the flare hits the ground. Algebraically determine the quadratic function representing the path of the flare, and use it to determine the approximate height of the flare at 9 s .

12. The flight path of an owl as it dives from a tree is shown below. The height of the owl above the ground, in metres, t seconds after it begins its dive is approximated by $h(t)=5 t^{2}-20 t+25$.

1
(A) What is the height of the owl at the start of the dive?

$$
25 m
$$

3
(B) Algebraically determine the minimum height of the owl.

$$
\begin{aligned}
& P=\frac{-(-20)}{2(5)}=2 \quad(2,5) \lessdot \text { minute. } \\
& q=5(2)^{2}-20(2)+25=5 \\
& \text { Min height of Sm }<2 s .
\end{aligned}
$$

13. Convert the following function from standard from to vertex form by completing the square and state the vertex.

$$
f(x)=-3 x^{2}-24 x-14
$$

$y=-3\left(x^{3}+8 x\right)-14$
$y=-3\left(x^{2}+8 x+16\right)-14+48$

$$
y=-3(x+4)^{2}+34
$$

$$
\text { vertex }(-4,34)
$$

14. A lifeguard must join 3 shoreline ties and 3 anchored buoys with single strands of rope to form a rectangular swimming area in 2 sections with no rope running along the shoreline. The lifeguard uses 600 m of rope in total. Find the quadratic function that models this situation, and determine the length and width that will produce a maximum for the entire rectangular swimming area.

$$
\begin{aligned}
& 3 \omega+l=600 \\
& A=l w \\
& l=-3 \omega+600 \\
& A=(-3 \omega+600) \omega \\
& A=-3 \omega^{2}+600 \omega \\
& P=-\frac{b}{2 a}=\frac{-600}{2(-3)}=100 \quad l=-3(100)+600 \\
& W=100 m
\end{aligned}
$$

