\qquad
Part I: \quad Multiple Choice. Write the correct answer in the space provided at the end of this section.

1. Which is a quadratic function with a positive discriminant?
(A)

(B)

(C)

(D)

2. Which quadratic function has zeros of $\frac{3}{2}$ and -5 ?

$$
x=\frac{3}{2} \quad x=-5
$$

(A) $\quad f(x)=2 x^{2}-7 x-15$

$$
2 x=3 \quad x+5=0
$$

(B) $\quad f(x)=2 x^{2}-13 x+15$
$2 x-3=0$
(C) $f(x)=2 x^{2}+7 x-15$
(D) $\quad f(x)=2 x^{2}+13 x-15$

$$
\begin{aligned}
& (2 x-3)(x+5)=0 \\
& 2 x^{2}+7 x-15
\end{aligned}
$$

3. Theresa's incorrect solution to the equation $4 x^{2}-7 x-3=0$ is shown. In which step does the first error occur?
$\begin{array}{ll}\text { Step 1 } & x=\frac{7 \pm \sqrt{(-7)^{2}-(4)(4)(-3)}}{2(4)} \\ \text { Step 2 } & x=\frac{7 \pm \sqrt{44-28}}{8} \\ \text { Step 3 } & x=\frac{7 \pm \sqrt{1}}{8} \\ \text { Step 4 } & x=1, x=\frac{3}{4}\end{array}$
(A) 1
(C) 3
(D) 4
4. What are the zeros of $y=(x-2)(3 x-5)$?
(A) $-2,-\frac{5}{3} \quad(x-2 \backslash(3 x-5)=0$
(B) 0,10
(C) $\frac{5}{3}, 2$
$x=2$

(D) 2,5
5. Which describes the quadratic function that has vertex $(-9,3)$ and passes through the point $(-4,-2)$?
(A) The axis of symmetry is $x=-9$ and the discriminant is negative.
(B) The axis of symmetry is $x=-9$ nd the discriminant is positive.
(C) The axis of symmetry is $x=9$ and the discriminant is negative.
(D) The axis of symmetry is $x=9$ and the discriminant is positive.

6. Solve: $2 x(x-3)+5(x-3)=0$
(A) $\quad x=-3, \quad x=-\frac{5}{2}$
$(x-3)(2 x+5)=0$
(B) $\quad x=-3, x=\frac{5}{2}$
$x=3, x=-5 / 2$
(c) $x=3, x=-\frac{5}{2}$
(D) $\quad x=3, \quad x=\frac{5}{2}$
7. The graph of a quadratic function $f(x)$ is shown. What best describes the discriminant for $f(x)=0$?
(A) $\mathrm{D}<0$
(B) $\mathrm{D}=0$
(C) $\mathrm{D} \geq 0$
(D) $\mathrm{D}>0$

8. If $x=5$ is one root of the equation $x^{2}+k x+30=0$, what is the value of ' k '?
(A) -11
(B) -5
(C) 5
(D) 11
$5^{2}+k(5)+30=0 \quad \square^{>} k=-11$
$25+5 k+30=0$ $\frac{5 k}{5}=\frac{-55}{5}$
9. Which equation would be used to determine two consecutive odd integers whose product is 143?
(A) $\quad x(x+1)=143$

$$
\begin{aligned}
& x, x+2 \\
& x(x+2)=143
\end{aligned}
$$

(B) $x(x+2)=143$
(C) $x(2 x+1)=143$
(D) $\quad(x+1)(x+2)=143$
10. The graph of a quadratic function is shown. What is a possible value for the discriminant of the related equation $f(x)=0$?
(A) -1
(B) 0
(C) $\sqrt{2}$
(D) $\frac{3}{2}$

fix)

11. What are the z
(A) $-\frac{3}{2}, 1$

$$
\begin{aligned}
& \left(2 x^{2}+2 x\right)(-3 x-3) \\
& 2 x(x+1)-3(x+1)
\end{aligned}
$$

(B) $-\frac{2}{3}, 1$

$$
(x+1)(2 x-3)=0
$$

(C) $\frac{2}{3},-1$

$$
x=-1, x=3 / 2
$$

(D) $\frac{3}{2},-1$
12. What value of n that will make the polynomial $36 x^{2}+n \mathfrak{K}+16$ a perfect square trinomial?
(A) 4
(B) 8
(C) 24
(D) 48

Answers to multiple choice.

1. \qquad 2. \qquad 3. \qquad 4. \qquad 5. \qquad
2. \qquad 7. \qquad 8. \qquad 9. \qquad 10. \qquad
3. \qquad 12. \qquad

Part II: Constructed Response. Answer each question in the space provided.
13. Algebraically determine the EXACT roots, in simplest form, for:

$$
2 x(3 x-1)=5
$$

$6 x^{2}-2 x-5=0$

14. Algebraically determine the EXACT roots, in simplest form:

$$
\begin{aligned}
& 16 x^{2}-16=48 x+24 \\
& 16 x^{2}-48 x-16-24=0 \\
& \frac{16 x^{2}-48 x-40}{8}=\frac{0}{8} \\
& \\
& x=\frac{2 x^{2}-6 x-5=0}{(-6) \pm \sqrt{(-6)^{2}-4(2)(-5)}} \frac{2(2)}{4} \\
& x=\frac{6 \pm \sqrt{36+40}}{4} \\
& x=\frac{6 \pm \sqrt{76}}{4} \\
& x=\frac{6 \pm \sqrt{4} \sqrt{19}}{4} \\
& x=\frac{6 \pm 2 \sqrt{19}}{4} \\
& x=\frac{3 \pm \sqrt{19}}{2}
\end{aligned}
$$

15. Algebraically determine the EXACT roots in simplest form for the equation:

$$
\begin{aligned}
& 25 x^{2}+20 x+7=0 \\
& x=\frac{-20 \pm \sqrt{20^{2}-4(5 x+4)=-7}}{2(25)} \\
& x=\frac{-20 \pm \sqrt{-300}}{50} \\
& x=\frac{-20 \pm \sqrt{100} \sqrt{3} \sqrt{-1}}{50} \\
& x=\frac{-20 \pm 10 \sqrt{3} i}{50} \\
& x=\frac{-2 \pm \sqrt{3} i}{5}
\end{aligned}
$$

16. Algebraically determine, the EXACT roots, in simplest form, for:

$$
\begin{gathered}
x \cdot \frac{-3}{x}=(x+2) \cdot x \\
-3=x^{2}+2 x \\
0=x^{2}+2 x+3 \\
x=\frac{-2 \pm \sqrt{2^{2}-4(1)(3)}}{2(1)} \\
x=\frac{-2 \pm \sqrt{-8}}{2} \\
x=-\frac{2 \pm \sqrt{4} \sqrt{2} \sqrt{-1}}{2} \\
x=\frac{-2 \pm 2 \sqrt{2} i}{2} \\
x=-1 \pm \sqrt{2 i}
\end{gathered}
$$

17. A toy rocket is launched in the air from a launcher located 6 m above the ground. The rocket's path is described by $h(t)=-5 t^{2}+18 t+6$ where $h(t)$ is the height of the rocket above the ground t seconds after launch. At what times is the rocket 15 metres in the air?

$$
15=-5 t^{2}+18 t+6
$$

$$
\begin{aligned}
& 5 t^{2}-18 t+9=0 \\
& t=\frac{18 \pm \sqrt{(-18)^{2}-4(5)(9)}}{2(5)} \\
& t=\frac{18 \pm \sqrt{144}}{10} \\
& t=\frac{18 \pm 12}{10} \\
& t=\frac{18 t 12}{10}, t=\frac{18-12}{10} \\
& t=\frac{30}{10}=35, t=\frac{6}{10}=0.65
\end{aligned}
$$

Rocket is 15 m high at 0.6 s and 3 s .
18. Find two consecutive whole numbers such that the sum of their squares is 221 .

$$
\begin{aligned}
& x, x+1 \\
& -x^{2}+(x+1)^{2}=221 \\
& \frac{x^{2}+x^{2}+2 x+1-221=0}{2 x^{2}+2 x-220}=\frac{0}{2} \\
& x^{2}+x-110=0 \\
& (x-10)(x+11)=0 \\
& x=10, x=11
\end{aligned}
$$

19. A toy rocket is launched in the air from a launcher located 6 m above the ground. The rocket's path is described by $h(t)=-5 t^{2}+13 t+6$ where $h(t)$ is the height of the rocket above the ground t seconds after launch. How long is the rocket in the air?

$$
\begin{aligned}
& -5 t^{2}+13 t+6=0 \\
& 5 t^{2}-13 t-6=0 \\
& x=\frac{-(-13) \pm \sqrt{(-13)^{2}-4(5)(-6)}}{2(5)} \\
& x=\frac{13 \pm \sqrt{289}}{10} \\
& x=\frac{13 \pm 17}{10} \\
& x=\frac{13+17}{10}, x=\frac{13-17}{10} \\
& x=\frac{30}{10}=35, x=-\frac{4}{10}=-0 \times 45
\end{aligned}
$$

The rocket is in the air for $3 s$.
20. The parking lot of a school is 40 m by 50 m . It is expanded by adding rectangular strips of equal widths, as shown in the diagram below. If the new parking lot has an area of $3575 \mathrm{~m}^{2}$, what is the width of the strip?

$l i \omega=A \quad x+50$
$(x+50)(x+40)=3575$
x^{2}

$x^{2}+90 x-1575=0$

The ste rp is 15 m wide.
21. A ball is thrown from a balcony on a building and its path is represented by The function $y=-5 x^{2}+20 x+60$, where x is the distance, in meters, from the building along the ground, and y is the height, in meters, above the ground. If the parking lot extends 5 m from the building, will the ball land on the parking lot or beyond?

22. An arrow is fired from a building at an initial height of 22 metres and reaches a maximum height of 72 metres, 5 seconds after it is fired. Write a quadratic equation

$$
\begin{aligned}
& y=a(x-p)^{2}+q \\
& 22=a(0-5)^{2}+72 \\
& 22-72=25 a \\
& \frac{-50}{25}=\frac{25 a}{25} \\
& a=-2 \\
& y=-2(x-5)^{2}+72 \\
& +72, x-5=-6, x-5=6 \\
& \frac{x 2}{2} \quad x-1, x=11
\end{aligned}
$$

$$
\begin{aligned}
& 0=-2(x-5)^{2}+72 \\
& \frac{2(x-5)^{2}}{2}=\frac{72}{2}
\end{aligned} \quad \begin{aligned}
& x-5=-6, x-5=6 \\
& x-x-1, x=11
\end{aligned}
$$

$$
\sqrt{(x-5)^{2}}=\sqrt{36}
$$

Arrow hits the ground

$$
x-5= \pm 6
$$ at $11 s$.

