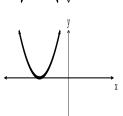
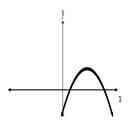

Part I: Multiple Choice. Write the correct answer in the space provided at the end of this section.

1. Which is a quadratic function with a positive discriminant?


(A)


(B)

(C)

(D)

2. Which quadratic function has zeros of $\frac{3}{2}$ and -5?

(A)
$$f(x) = 2x^2 - 7x - 15$$

(B)
$$f(x) = 2x^2 - 13x + 15$$

(C)
$$f(x) = 2x^2 + 7x - 15$$

(D)
$$f(x) = 2x^2 + 13x - 15$$

Theresa's incorrect solution to the equation $4x^2 - 7x - 3 = 0$ is shown. In which 3. step does the **first** error occur?

Step 1
$$x = \frac{7 \pm \sqrt{(-7)^2 - (4)(4)(-3)}}{2(4)}$$

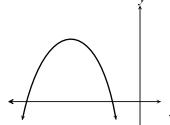
Step 2 $x = \frac{7 \pm \sqrt{49 - 48}}{8}$
Step 3 $x = \frac{7 \pm \sqrt{1}}{8}$
Step 4 $x = 1$, $x = \frac{3}{4}$

Step 2
$$x = \frac{7 \pm \sqrt{49 - 48}}{9}$$

Step 3
$$x = \frac{7 \pm \sqrt{1}}{8}$$

Step 4
$$x = 1$$
, $x = \frac{3}{4}$

- (A) 1
- 2 (B)
- 3 (C)
- 4 (D)
- What are the zeros of y = (x 2)(3x 5)? 4.
 - (A) $-2, -\frac{5}{3}$
 - 0, 10 (B)
 - (C) $\frac{5}{3}$, 2
 - 2, 5 (D)
- Which describes the quadratic function that has vertex (-9,3) and passes through 5. the point (-4, -2)?
 - The axis of symmetry is x = -9 and the discriminant is negative. (A)
 - The axis of symmetry is x = -9 and the discriminant is positive. (B)
 - The axis of symmetry is x = 9 and the discriminant is negative. (C)
 - The axis of symmetry is x = 9 and the discriminant is positive. (D)


- 6. Solve: 2x(x-3) + 5(x-3) = 0
 - (A) $x = -3, x = -\frac{5}{2}$
 - (B) $x = -3, x = \frac{5}{2}$
 - (C) x = 3, $x = -\frac{5}{2}$
 - (D) x = 3, $x = \frac{5}{2}$
- 7. The graph of a quadratic function f(x) is shown. What best describes the discriminant for f(x) = 0?

(C)
$$D \ge 0$$

8. If x = 5 is one root of the equation $x^2 + kx + 30 = 0$, what is the value of 'k'?

(A)
$$-11$$

(B)
$$-5$$

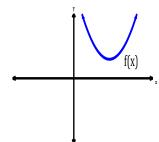
9. Which equation would be used to determine two consecutive odd integers whose product is 143?

(A)
$$x(x+1) = 143$$

(B)
$$x(x+2) = 143$$

(C)
$$x(2x+1) = 143$$

(D)
$$(x+1)(x+2) = 143$$


10. The graph of a quadratic function is shown. What is a possible value for the discriminant of the related equation f(x) = 0?

11. What are the zeroes of the function $f(x) = 2x^2 - x - 3$?

(A)
$$-\frac{3}{2}$$
, 1

(B)
$$-\frac{2}{3}$$
, 1

(C)
$$\frac{2}{3}$$
, -1

(D)
$$\frac{3}{2}$$
, -1

- 12. What value of n that will make the polynomial $36x^2 + nb + 16$ a perfect square trinomial?
 - (A) 4
 - (B) 8
 - (C) 24
 - (D) 48

Answers to multiple choice.

1.___ 2.___ 3.___ 4.___ 5.___

6.__ 7.__ 8.__ 9.__ 10.__

11.___ 12.___

Part II: Constructed Response. Answer each question in the space provided.

13. Algebraically determine the **EXACT** roots, in simplest form, for:

$$2x(3x-1)=5$$

14. Algebraically determine the **EXACT** roots, in simplest form:

$$16(x^2 - 1) = 24(2x + 1)$$

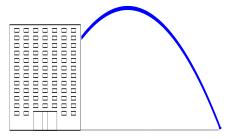
15. Algebraically determine the **EXACT** roots in simplest form for the equation:

$$5x(5x+4) = -7$$

16. Algebraically determine, the **EXACT** roots, in simplest form, for:

$$\frac{-3}{x} = x + 2$$

17. A toy rocket is launched in the air from a launcher located 6 m above the ground. The rocket's path is described by $h(t) = -5t^2 + 18t + 6$ where h(t) is the height of the rocket above the ground t seconds after launch. At what times is the rocket 15 metres in the air?


18.	Find two consecutive whole numbers such that the sum of their squares is 265.

19. A toy rocket is launched in the air from a launcher located 6 m above the ground. The rocket's path is described by $h(t) = -5t^2 + 13t + 6$ where h(t) is the height of the rocket above the ground t seconds after launch. How long is the rocket in the air?

20. The parking lot of a school is 40 m by 50 m. It is expanded by adding rectangular strips of equal widths, as shown in the diagram below. If the new parking lot has an area of 3575m^2 , what is the width of the strip?

21. A ball is thrown from a balcony on a building and its path is represented by The function $y = -5x^2 + 20x + 60$, where x is the distance,in meters, from the building along the ground, and y is the height, in meters, above the ground. If the parking lot extends 5 m from the building, will the ball land on the parking lot or beyond?

22. An arrow is fired from a building at an initial height of 22 metres and reaches a maximum height of 72 metres, 5 seconds after it is fired. Write a quadratic equation which models this situation use it to determine when the arrow hits the ground.