\qquad
Part I: \quad Multiple Choice. Write the correct answer in the space provided at the end of this section.

1. What is the simplest form of $\sqrt[3]{54 x^{5} y^{6} z^{8}}$?
(A) $\quad 2 x y^{2} z^{2} \sqrt[3]{3 x^{2} z^{2}}$
(B) $3 x^{2} y^{3} z^{4} \sqrt[3]{6 x}$
(C) $3 x y^{3} z^{2} \sqrt[3]{2 x^{2} z^{2}}$
(D) $3 x y^{2} z^{2} \sqrt[3]{2 x^{2} z^{2}}$
2. Simplify completely: $\frac{2}{7} \sqrt{98}-\frac{3}{2} \sqrt{8}+\frac{4}{5} \sqrt{50}$
(A) $3 \sqrt{2}$
(B) $\quad 5 \sqrt{2}$
(C) $9 \sqrt{2}$
(D) $28 \sqrt{2}$
3. Simplify completely: $\frac{6 \sqrt{12 x^{16}}}{2 \sqrt{18 x^{9}}}$
(A) $\quad x \sqrt{16}$
(B) $\quad x^{3} \sqrt{6 x}$
(C) $\frac{3}{2} x^{3} \sqrt{3 x}$
(D) $\frac{3}{2} x^{3} \sqrt{6 x}$
4. An incorrect simplification is provided. In which step does the first error occur?

Simplify: $\frac{\sqrt{3}+\sqrt{5}}{\sqrt{3}-\sqrt{5}} \quad$ Solution: Step 1: $\frac{\sqrt{3}+\sqrt{5}}{\sqrt{3}-\sqrt{5}} \cdot \frac{\sqrt{3}+\sqrt{5}}{\sqrt{3}+\sqrt{5}}$
Step 2: $\frac{\sqrt{9}+\sqrt{25}}{\sqrt{9}-\sqrt{25}}$

Step 3: $\frac{3+5}{3-5}$

Step 4: 4
(A) 1
(B) 2
(C) 3
(D) 4
5. Determine a simplified expression for the value of \boldsymbol{x} :

(A) $2 \sqrt{3}+\sqrt{5}$
(B) $2 \sqrt{3}+3 \sqrt{5}$
(C) $4 \sqrt{3}+\sqrt{5}$
(D) $4 \sqrt{3}+3 \sqrt{5}$
6. Write $4 x^{3} y^{2} \sqrt{5 x y}$ as an entire radical.
(A) $\sqrt{20 x^{7} y^{5}}$
(B) $\sqrt{20 x^{10} y^{5}}$
(C) $\sqrt{80 x^{7} y^{5}}$
(D) $\sqrt{80 x^{10} y^{5}}$
7. Simplify completely: $\frac{\sqrt{6}}{\sqrt{3}+\sqrt{2}}$
(A) $3 \sqrt{2}-2 \sqrt{3}$
(B) $3 \sqrt{2}+2 \sqrt{3}$
(C) $\frac{3 \sqrt{2}-2 \sqrt{3}}{5}$
(D) $\frac{3 \sqrt{2}+2 \sqrt{3}}{5}$
8. Simplify completely: $\frac{\sqrt[3]{2}}{\sqrt[3]{6}}$
(A) $\frac{\sqrt[3]{3}}{3}$
(B) $\frac{\sqrt[3]{9}}{3}$
(C) $\frac{\sqrt[3]{12}}{6}$
(D) $\frac{\sqrt[3]{72}}{6}$
9. What are the restrictions on x of the solution to the equation $\sqrt{-8-2 x}=7$?
(A) $\quad x \leq-4$
(B) $x \geq-4$
(C) $x \leq 4$
(D) $x \geq 4$
10. Solve: $\sqrt{5 x}=6$
(A) $\quad x=\frac{6}{5}$
(B) $x=\frac{6}{\sqrt{5}}$
(C) $x=\frac{36}{25}$
(D) $x=\frac{36}{5}$
11. Solve $\sqrt{7 x-5}=\sqrt{x-6}$
(A) $x=-\frac{11}{6}$
(B) $x=-\frac{11}{8}$
(C) $x=-\frac{1}{6}$
(D) $\quad x=-\frac{1}{8}$
12. Solve $\sqrt{2 x+1}=-5$
(A) $x=-3$
(B) $x=2$
(C) $x=12$
(D) no solution

Answers to multiple choice.
1._-_
2.__
7._-
6.__
\qquad 8. \qquad _ 12.
11. \qquad

Constructed Response. Answer each question in the space provided.
13. Rationalize the denominator and simplify: $\frac{\sqrt{6}}{4-\sqrt{2 x}}$
14. State restrictions on the variable and solve. Be sure to check for extraneous roots:

$$
n-\sqrt{3-n}=-9
$$

15. State restrictions on the variable and solve. Be sure to check for extraneous roots:

$$
\frac{1}{2} m-\sqrt{13-m}=-1
$$

16. State restrictions on the variable and solve. Be sure to check for extraneous roots:

$$
\sqrt{m+19}+\sqrt{m-2}=7
$$

17. The areas of congruent squares A and B are represented by $\sqrt{3 x+1}$ square units and $(x-1)$ square units, respectively. Algebraically determine the area of each square.

18. The formula $s=2 \pi \sqrt{\frac{l}{32}}$ represents the swing of a pendulum, where s is the time, in seconds, to swing back and forth, and l is the length of the pendulum, in feet.
(A) Solve the formula for l.
(B) What is the length of a pendulum that makes one swing in 1.5 s ?
