Name: $\qquad$

Part I: Multiple Choice. Place the correct answer in the corresponding blank at the end of this section.

1. What is the relationship between $\angle w$ and $\angle y$ ?
(A) Alternate Interior Angles
(B) Corresponding Angles

(C) Same Side Interior Angles
(D) Vertically Opposite Angles

2. Which sets of lines $\left(\mathrm{L}_{1}, \mathrm{~L}_{2}\right)$ are parallel?
(A)

(B)

(D)

3. Which pair of angles are alternate interior?
(A) $\angle$ a and $\angle \mathrm{e}$
(B) $\angle \mathrm{b}$ and $\angle \mathrm{c}$
(C) d and $\angle \mathrm{e}$
(D) $\angle \mathrm{d}$ and $\angle \mathrm{f}$

4. If $L_{1} \| L_{2}$ in the diagram below, what is the value of $\boldsymbol{x}$, in degrees?
(A) 50
(B) 65
(C) 100
(D) 130

5. In the diagram below, what is the value of $\boldsymbol{x}$, in degrees?
(A) 40
(B) 80
(C) 110
(D) 140

6. Students were asked to provide statements and reasons to prove the conjecture: "Alternate exterior angles formed by the intersection of a transversal and parallel lines are congruent". What is the error in this proof?

7. In the diagram below, what is the measure of $\angle \mathrm{ABC}$, in degrees?
(A) 50
(B) 60
(C) 80
(D) 130

8. Which congruency relationship proves the two triangles congruent?
(A) SSS
(B) IAS
(C) ASA
(D) MAS

9. What is the sum of the measures of the interior angles of the polygon?
(A) $540^{\circ}$
(B) $720^{\circ}$

$$
S=180(n-2)
$$

(C) $900^{\circ}$

$$
\begin{aligned}
S & =180(6-2) \\
& =180(4) \\
& =720^{\circ}
\end{aligned}
$$

(D) $1080^{\circ}$

10. The sum of the measures of the interior angles of a regular polygon is $1080^{\circ}$. How many
sides does the regular polygon have?
(A) 6
(B) 7
(C) 8
(D) 10


Answers to multiple choice.

2. $\qquad$ 3.
4._-_
5.
6.__
7.
8. $\qquad$ 9. $\qquad$ 10. $\qquad$
$20 \quad$ Part II: Constructed Response. Answer each question in the space provided. Show all workings.

5 11. Determine the value of $x$.


5 12. Determine the measure of $\angle A$.
$3 x+5+2 x+5+35=180$
$5 x+45=180$
$5 x=180-45$
$5 \frac{x}{5}=\frac{135}{5}$
$x=27$
$\angle A=2(27)+5=59^{\circ}$
13. Given: $\overline{A C}=\overline{E C}$

$$
\overline{B C}=\overline{D C}
$$

Prove: $\triangle A B C \cong \triangle E D C$


| Statements | Reason |
| :---: | :---: |
| $A C=\overparen{E C}$ | Given |
| $\overline{R C}=\overparen{D C}$ | Given |
| $\angle A C B=L D C E$ | vertically opposite |
| $\triangle A R C \cong \triangle C D E$ | MAS |

5
14. Given: $\angle D A B=\angle D C B$

$$
\angle A D B=\angle C D B
$$

Prove: $\triangle A D B \cong \triangle C D B$


