Name: \qquad

$$
\frac{\sin \mathrm{A}}{a}=\frac{\sin \mathrm{B}}{b}=\frac{\sin \mathrm{C}}{c} \quad a^{2}=b^{2}+c^{2}-2 b c \cdot \cos \mathrm{~A} \quad \cos \mathrm{~A}=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
$$

Part I: Multiple Choice. Place the correct answer in the corresponding blank at the end of

 this section.1. Determine the measure of $\angle \mathrm{D}$ to the nearest tenth of a degree.
(A) 18.4°
(B) 19.5°
(C) 70.5°
(D) 71.6°

$$
\begin{aligned}
& \tan D=\frac{3}{9} \\
& \tan D=0.3333 \\
& D=\tan ^{-1}(0.3333)
\end{aligned}
$$

2. Determine the length of side z to the nearest tenth of a centimetre.
(A) 9.7 cm
(B) 2.6 cm
$\frac{\tan 61^{\circ}}{1}=\frac{z}{4.7}$ $z=8.5$

3. A flagpole casts a shadow that is 21 m long when the angle between the sun's rays and the ground is 48°. Determine the height of the flagpole, to the nearest metre.
A) 19 m
B) 16 m
C) 14 m
(D) 23 m
4. Determine $\sin \mathrm{A}$ and $\cos \mathrm{A}$ to the nearest tenth.
(A) $\sin \mathrm{A}=1.7 ; \cos \mathrm{A}=0.8$
(B) $\sin \mathrm{A}=0.6 ; \cos \mathrm{A}=1.3$
(C) $\sin \mathrm{A}=0.8 ; \cos \mathrm{A}=0.6$
(D) $\sin \mathrm{A}=0.6 ; \cos \mathrm{A}=0.8$
$\sin A=\frac{13}{20}=0.6$
$\cos A=\frac{16}{20}=0.8$

5. Determine the measure of $\angle \mathrm{V}$ to the nearest tenth of a degree.
(A) 59.5
(B) 36.1
(C) 30.5
(D) 53.9

$$
\begin{aligned}
& \cos V=\frac{8.9}{15.1} \\
& \cos V=0.5894 \\
& V=\cos ^{-1}(0.5894) \\
& V=53.9^{\circ}
\end{aligned}
$$

6. Calculate the length of this rectangle to the nearest tenth of a metre.
(A) 7.9 m
(B) 2.9 m
(CC) 6.7 m

(D) 3.1 m

7. An architect draws this diagram of a wheelchair entrance ramp for a building. Determine the angle of inclination of the ramp to the nearest tenth of a degree.

8. A surveyor made the measurements shown in the diagram. Determine the distance from R to S, to the nearest hundredth of a metre.
(A) 46.66 m
(B) 70.50 m
(C) 25.75 m
(D) 58.79 m

9. Determine the length of QR to the nearest metre.
(A) 85 m
(B) 170 m
(C) 127 m
(D) 118 m

$$
x=122
$$

10. A ladder which is 6 m in length is resting against a house. The ladder makes an angle of 20° with the ground. How far from the base of the house is the ladder touching the ground?
(A) 2.1 m
(B) 2.2 m
$\cos 20^{\circ}=\frac{x}{6}$
(D) 1.6 .5 m (D) $\quad X=5.6$

11. Which of the following is the correct ratio for $\cos A$?
(A) $\frac{5}{12}$
(B) $\frac{5}{13}$
(C) $\frac{12}{13}$
(D) $\frac{13}{12}$
$\cos A=\frac{12}{13}$

12. Determine the value of x .

13. What is the value of x in the diagram below?
(A) 45.4
(B) 24.7

(C) 19.2
(D) 16.1

$$
x=19.2
$$

14. What is the value of θ in the diagram below?
(A) 35°
(B) 46°
(C) 0.77°

$$
\sin \theta=\frac{12.1}{17.3}
$$

(D) 44°
$\sin \theta=0.6994$
$\theta=44^{\circ}$

15. If a triangle has sides of lengths a, b and c, then according to the Law of Sines, A what does a equal? $\frac{a}{\sin A}=\frac{c}{\sin C} \cdot \sin A \quad a=\frac{c \sin A}{\sin C}$
(A) $\frac{c \sin C}{\sin A}$
(B) $\frac{c \sin A}{\sin C}$
(C) $\frac{c \sin B}{\sin A}$
(D) $\frac{\sin C}{a \sin A}$

$$
\angle A=180^{\circ}-\left(36^{\circ}+78^{\circ}\right)=66^{\circ}
$$

16. Find the value of x in the diagram below.
(A) 25.7
(B) 39.9
(C) 12.2
(D) 24

$$
\frac{x}{\sin 78^{\circ}}=\frac{24}{\sin .66^{\circ}} \quad x=25.7
$$

17. Find the measure of the missing angle to the nearest degree.
(A) 67°
(B) 23°
(C) 50°
(D) 35°

$$
\begin{aligned}
& \frac{\sin x}{13.5}=\frac{\sin 55^{\circ}}{12} \\
& \frac{\sin x}{13.5 L}=\frac{\sin x=0.92}{1} x=677^{\circ}
\end{aligned}
$$

18. Which of the following would be the correct formula to use for finding the length of AB ?
(A) $b^{2}=a^{2}+c^{2}-2 a c \cos B$
(B) $c^{2}=a^{2}+b^{2}+2 a b \cos C$
((C) $c^{2}=a^{2}+b^{2}-2 a b \cos C$
(D) $a^{2}=b^{2}+c^{2}-2 b c \cos A$

19. Find the value of x in the diagram below.
(1)125 $x^{2}=(12)^{2}+(15)^{2}-2(1)(15) \cos 126^{\circ}$
(B) $24.1 \sqrt{x^{2}}=\sqrt{580 \cdot 6027}$
(D) 8.8

$$
x=24.1
$$

20. Find the measure of the smallest angle in the diagram below.
(A) 88°

* Smallest angle
(B) 54°
(DC) 38°
(D) 36°

$$
\begin{aligned}
& \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
& \cos A=\frac{(31)^{2}+(25)^{2}-}{2(31)(25)} \\
& \cos A=\frac{1225}{1550} \\
& \cos A=0.7903
\end{aligned}
$$ side.

$$
\cos A=\frac{(31)^{2}+(25)^{2}-(19)^{2}}{2(1)} C^{31} A
$$

$$
A=38^{\circ}
$$

Part II: Constructed Response. Answer each question in the space provided. Show all workings.
21. The straight-line distance between Kelly's Island and Bell Island is 4.6 km . Bonita and John want to take their boat from Kelly's Island to the tip of Little Bell Island. How far will they travel in total? Give your answer to the nearest tenth of a metre.

$$
180^{\circ}-\left(31^{\circ}+63^{\circ}\right)=86^{\circ}
$$

Little Belltsland
They
will trave 15.2 km .
22. Find the missing value of x in the following triangle to the nearest meter.

$$
\begin{aligned}
a^{2} & =b^{2}+c^{2}-2 b c \cos A \\
a^{2} & =(11)^{2}+(14)^{2}-2(11)(14) \cos 54^{\circ} \\
\sqrt{a^{2}} & =\sqrt{135.9621} \\
a & =12 m
\end{aligned}
$$

23. Find the measure of θ to the nearest degree in the following triangle.

24. Two airplanes leave the Fort Chipewyan airport in Alberta at the same time. One airplane travels at $360 \mathrm{~km} / \mathrm{h}$. The other airplane travels at $430 \mathrm{~km} / \mathrm{h}$. About $\mathbf{3 0 \text { min later, they are }}$ 150 km apart. Draw a diagram and determine the angle between their paths, to the nearest

25. A radio tower is supported by two wires on opposite sides. On the ground, the ends of the wires are 46.5 m apart. The angles of elevation for the wires are 62° and 67° respectively. Determine the length of the longest wire and the height of the tower to the nearest tenth of

