1. Simplify:

(A)
$$\sqrt{45}$$

(B)
$$3\sqrt{80x^3}$$

(C)
$$\sqrt[3]{54x^6y}$$

2. Write as an entire radical:

(A)
$$3\sqrt{2}$$

(B)
$$2x\sqrt[3]{4}$$

(C)
$$3xy\sqrt{2x}$$

3. State the restrictions for each of the following:

(A)
$$\sqrt{x^2}$$

(B)
$$\sqrt{2x}$$

(C)
$$\sqrt{3x+2}$$

(D)
$$\frac{\sqrt{3x}}{x^2}$$

(E)
$$\frac{4x\sqrt{x}}{\sqrt{x^3}}$$

4. Simplify:

(A)
$$3\sqrt{6x} - 5\sqrt{10} + 8\sqrt{6x} - 2\sqrt{10}$$

(B)
$$\sqrt{50} - 4\sqrt{2} + \sqrt{18}$$

(C)
$$\sqrt{27x^3} + 2\sqrt{12x^3} - 2x\sqrt{3x}$$

(D)
$$(3\sqrt{2})(5\sqrt{6})$$

(E)
$$\sqrt{6x^3} \cdot \sqrt{3x^2}$$

$$(F) \qquad -3x\sqrt{5x^2}\left(2\sqrt{10x}\right)$$

(G)
$$\left(3\sqrt{6}\right)\left(\sqrt{2}\right) + 2\sqrt{75}$$

$$(H) \qquad 3x\sqrt{2}\left(x\sqrt{10}+\sqrt{2}\right)$$

(I)
$$(3-\sqrt{2})(2-5\sqrt{2})$$

(J)
$$\left(6+\sqrt{5x}\right)^2$$

(K)
$$\frac{2}{\sqrt{3}}$$

$$\text{(L)} \qquad \frac{40\sqrt{x^5}}{8\sqrt{x^2}}$$

$$(M) \qquad \frac{3-2\sqrt{x}}{\sqrt{x}}$$

5. Find the perimeter and area for the rectangle below in simplest form.

6. Solve each equation and verify the solution.

(A)
$$\sqrt[3]{2x} - 6 = -2$$

(B)
$$\sqrt{2x-1}+3=6$$
 (C) $4\sqrt{3x+1}=-8$

(C)
$$4\sqrt{3x+1} = -8$$

- 7. The speed that a tsunami (tidal wave) can travel is modeled by the equation $S = 356\sqrt{d}$ where S is the speed of the tsunami in km/h and d is the average depth of the water in km. A tsunami is found to be travelling at 120 km/h, what is the average depth of the water? Round your answer to three decimal places.
- Suppose the function, $S = \pi \sqrt{\frac{9.8l}{7}}$, where S represents speed in meters per second 8. and l is the leg length of a person in meters, can approximate the maximum speed that a person can run. What is the leg length of a person with a running speed of 2.7 meters per second to the nearest tenth of a meter?
- 9. A cylindrical container of chocolate drink mix has a volume of 162 cubic inches. The radius r of the container can be found by using the formula , $r = \sqrt{\frac{V}{\pi h}}$, where V is the volume of the container and h is the height. If the radius is 2.5 inches, find the height of the container. Round your answer to the nearest hundredth.
- 10. Use the diagram to determine the length x and y in simplest terms.

Answers:

4.

1. (A)
$$3\sqrt{ }$$

B)
$$12x\sqrt{5x}$$

$$3\sqrt{5}$$
 (B) $12x\sqrt{5x}$ (C) $3x^2\sqrt[3]{2y}$

2. (A)
$$\sqrt{18}$$

(B)
$$\sqrt[3]{32x^3}$$

(C)
$$\sqrt{18x^3y^2}$$

3. (A)
$$x \in R$$

(B)
$$x \ge 0, x \in I$$

(B)
$$x \ge 0, x \in R$$
 (C) $x \ge -\frac{2}{3}, x \in R$

(D)
$$x > 0, x \in R$$
 E) $x > 0, x \in R$

(A)
$$11\sqrt{6x} - 7\sqrt{10}$$
 (B) $4\sqrt{2}$ (C) $5x\sqrt{3x}$

(B)
$$4\sqrt{2}$$

(C)
$$5x\sqrt{3}x$$

(D)
$$30\sqrt{3}$$

E)
$$3x^2\sqrt{2x}$$

E)
$$3x^2\sqrt{2x}$$
 F) $-30x^2\sqrt{2x}$

G)
$$16\sqrt{3}$$

H)
$$6x^2\sqrt{5} + 6x$$
 I) $16-17\sqrt{2}$

I)
$$16-17\sqrt{2}$$

J)
$$36+12\sqrt{5x}+5x$$
 K) $\frac{2\sqrt{3}}{3}$ L) $5x\sqrt{x}$

K)
$$\frac{2\sqrt{3}}{3}$$

L)
$$5x\sqrt{x}$$

M)
$$\frac{3\sqrt{x}-3x}{x}$$

5. Perimeter =
$$4+10\sqrt{6}$$

Area =
$$4\sqrt{6} + 36$$

6. (A)
$$x = 32$$
 (don't forget the check!!)

(B)
$$x = 5$$

(C)
$$x = 5$$
 (reject...it's an extraneous root)

7.
$$d = 0.114 \text{ km}$$

8.
$$l = 0.5 \text{ m}$$

9.
$$H = 6.42$$
 inches

10.
$$y = \sqrt{130}$$
 $x = 3\sqrt{10} + 2\sqrt{10} = 5\sqrt{10}$