Name \qquad

1. Simplify:
(A) $\sqrt{45}$
(B) $3 \sqrt{80 x^{3}}$
(C) $\sqrt[3]{54 x^{6} y}$
2. Write as an entire radical:
(A) $3 \sqrt{2}$
(B) $\quad 2 x \sqrt[3]{4}$
(C) $3 x y \sqrt{2 x}$
3. State the restrictions for each of the following:
(A) $\sqrt{x^{2}}$
(B) $\sqrt{2 x}$
(C) $\sqrt{3 x+2}$
(D) $\frac{\sqrt{3 x}}{x^{2}}$
(E) $\frac{4 x \sqrt{x}}{\sqrt{x^{3}}}$
4. Simplify:
(A) $3 \sqrt{6 x}-5 \sqrt{10}+8 \sqrt{6 x}-2 \sqrt{10}$
(B) $\sqrt{50}-4 \sqrt{2}+\sqrt{18}$
(C) $\sqrt{27 x^{3}}+2 \sqrt{12 x^{3}}-2 x \sqrt{3 x}$
(D) $\quad(3 \sqrt{2})(5 \sqrt{6})$
(E) $\sqrt{6 x^{3}} \cdot \sqrt{3 x^{2}}$
(F) $\quad-3 x \sqrt{5 x^{2}}(2 \sqrt{10 x})$
(G) $\quad(3 \sqrt{6})(\sqrt{2})+2 \sqrt{75}$
(H) $\quad 3 x \sqrt{2}(x \sqrt{10}+\sqrt{2})$
(I) $\quad(3-\sqrt{2})(2-5 \sqrt{2})$
(J) $\quad(6+\sqrt{5 x})^{2}$
(K) $\frac{2}{\sqrt{3}}$
(L) $\frac{40 \sqrt{x^{5}}}{8 \sqrt{x^{2}}}$
(M) $\frac{3-2 \sqrt{x}}{\sqrt{x}}$
5. Find the perimeter and area for the rectangle below in simplest form.

6. Solve each equation and verify the solution.
(A) $\sqrt[3]{2 x}-6=-2$
(B) $\sqrt{2 x-1}+3=6$
(C) $\quad 4 \sqrt{3 x+1}=-8$
7. The speed that a tsunami (tidal wave) can travel is modeled by the equation $S=356 \sqrt{d}$ where S is the speed of the tsunami in km / h and d is the average depth of the water in km . A tsunami is found to be travelling at $120 \mathrm{~km} / \mathrm{h}$, what is the average depth of the water? Round your answer to three decimal places.
8. Suppose the function, $S=\pi \sqrt{\frac{9.8 l}{7}}$, where S represents speed in meters per second and l is the leg length of a person in meters, can approximate the maximum speed that a person can run. What is the leg length of a person with a running speed of 2.7 meters per second to the nearest tenth of a meter?
9. A cylindrical container of chocolate drink mix has a volume of 162 cubic inches. The radius r of the container can be found by using the formula, $r=\sqrt{\frac{V}{\pi h}}$, where V is the volume of the container and h is the height. If the radius is 2.5 inches, find the height of the container. Round your answer to the nearest hundredth.
10. Use the diagram to determine the length x and y in simplest terms.

Answers:

1. $(\mathrm{A}) \quad 3 \sqrt{5}$
(B) $12 x \sqrt{5 x}$
(C) $3 x^{2} \sqrt[3]{2 y}$
2.

(B) $\sqrt[3]{32 x^{3}}$
(C) $\sqrt{18 x^{3} y^{2}}$
3.
(A) $\sqrt{18}$
(B) $\quad x \geq 0, x \in R$
(C) $x \geq-\frac{2}{3}, x \in R$
(D) $\quad x>0, x \in R$
E) $\quad x>0, x \in R$
4.
(A) $11 \sqrt{6 x}-7 \sqrt{10}$
(B) $4 \sqrt{2}$
(C) $5 x \sqrt{3 x}$
(D) $30 \sqrt{3}$
E) $\quad 3 x^{2} \sqrt{2 x}$
F) $\quad-30 x^{2} \sqrt{2 x}$
G) $16 \sqrt{3}$
H) $6 x^{2} \sqrt{5}+6 x$
I) $16-17 \sqrt{2}$
J) $36+12 \sqrt{5 x}+5 x$
K) $\frac{2 \sqrt{3}}{3}$
L) $5 x \sqrt{x}$
M) $\quad \frac{3 \sqrt{x}-3 x}{x}$
5. Perimeter $=4+10 \sqrt{6} \quad$ Area $=4 \sqrt{6}+36$
6. (A) $x=32$ (don't forget the check!!)
(B) $x=5$
(C) $\mathrm{x}=5$ (reject...it's an extraneous root)
7. $\mathrm{d}=0.114 \mathrm{~km}$
8. $\quad \mathrm{l}=0.5 \mathrm{~m}$
9. $H=6.42$ inches
10. $y=\sqrt{130} \quad x=3 \sqrt{10}+2 \sqrt{10}=5 \sqrt{10}$

