\qquad

Part I: Multiple Choice - Circle the letter that corresponds with the best answer. [10 marks]

1. To solve the quadratic equation $3 x^{2}+11 x-4=0$, Irene correctly factors the equation as $(3 x-1)(x+4)=0$. What are the solutions of the equation?

$$
\begin{array}{ll}
3 x-1=0 & x+4=0 \\
3 x=1 & x=-4 \\
x=1 / 3 &
\end{array}
$$

A. $\frac{-1}{3}, 4$
(B. $\frac{1}{3},-4$
C. $3,-4$
D. $\quad-3,4$
2. Yuko's steps for solving the quadratic equation $2 x^{2}-5 x-4=0$ using the quadratic formula are shown below. She incorrectly determines that the solutions are 0.64 and -3.14 , to the nearest hundredth. In which step did Yuko's first mistake occur?
$\begin{array}{ll}\text { (A. } & 1 \\ \text { B. } & 2\end{array}$
STEP $1 \quad x=\frac{\left(-5 \pm \sqrt{(-5)^{2}-4(2)(-4)}\right.}{2(2)}$
C. 3
D. 4
STEP $2 \quad x=\frac{-5 \pm \sqrt{25+32}}{4}$
STEP $3 \quad x=\frac{-5 \pm \sqrt{57}}{4}$
STEP $4 x=0.64,-3.14$
3. What are the roots of the quadratic equation $x^{2}-1=0$?
A. $\quad-2$ and -1
B. -2 and 0
C. -1 and 0
D. -1 and 1
$(x-1)(x+1)=0$
$x-1=0,1 x+1=0$

$$
x=1 \quad x=-1
$$

4. Which expression is the factored form of $3 x^{2}+11 x-4$?
A. $\quad(3 x+4)(x-1)$
B. $(3 x+1)(x-4)$
C. $(3 x-1)(x+4)$
D. $(3 x-4)(x+1)$

$$
(3 x-1)(x+4)
$$

5. Which values of \mathbf{x} are solutions of the quadratic equation $x^{2}-8 x=20$?
(A)

$$
x=-2, x=10
$$

B. $\quad x=-10, x=2$
C. $x=-8, x=-20$
D. $x=8, x=20$

$$
x^{2}-8 x-20=0
$$

$$
\begin{aligned}
& (x+2)(x-10)=0 \\
& x+2=0
\end{aligned}
$$

$$
x+2=0
$$

$$
x \times-10=0
$$

$$
x=-2, x=10
$$

4,5
6. What is the simplest form of $\frac{-5 \pm \sqrt{75}}{5}$?
(A) $\pm 5 \sqrt{3}$
(B) $-1 \pm 5 \sqrt{3}$
(C) $-1 \pm \sqrt{3}$
(D) $\quad-1 \pm \sqrt{75}$

7. Which quadratic function has zeros of $\frac{\mathbf{1}}{\mathbf{2}}$ and $\mathbf{- 3}$?

$$
x=\frac{1}{2}, x=-3
$$

A. $f(x)=2 x^{2}-7 x+3$
B. $f(x)=2 x^{2}-5 x-3$
C. $f(x)=2 x^{2}+5 x-3$

$$
2 x-1=0
$$

D. $f(x)=2 x^{2}+7 x+3$

$$
2 x=1, x+3=0
$$

$$
(\sqrt{2 x-1})(x+3)=0
$$

$$
2 x^{2}+6 x-x-3=0
$$

8. What are the solutions of the quadratic equation $25 x^{2}-36=0$?

$$
\begin{aligned}
& 2 x^{2}+5 x-3=0 \\
& -36=0 ?
\end{aligned}
$$

(A) $x=-\frac{6}{5}, x=\frac{6}{5}$

$$
\text { B. } x=-5, x=5
$$

$$
\begin{aligned}
& (5 x-6)(5 x+6)=0 \\
& 5 x-6=0,5 x+6=0 \\
& 5 x=6,55=-6 \\
& x=6 / 5, \\
& x=-6 / 5
\end{aligned}
$$

C. $x=\frac{5}{6}, x=-\frac{5}{6}$
D. $x=6, x=-6$
9. Which quadratic equation has no real solutions? $\quad b^{2}-4 a c<0$ no solution
A. $x^{2}-9=0 \quad 0^{2}-4(1)(-9)=36 \quad b^{2}-4 k<=0 \quad 1$ solution
B. $x^{2}+4 x+3=04^{2}-4(1)(3)-16-12=4$
C. $\begin{aligned} & x^{2}-3=0 \\ & x^{2}+4=0\end{aligned} \quad 0^{2}-4(1)(-3)=12$
(D.) $x^{2}+4=0 \quad 0^{2}-4(1)(4)=-16$
10. What are the \mathbf{x}-intercepts of the quadratic function shown?
(A) $-3 \&-1$
B. $-2 \& 3$
C. $1 \& 3$
D. $-9 \& 0$

Answers to multiple choice.

1.
2.
3.

\qquad
.

8. \qquad
4.

5. \qquad
9.
10. \qquad

Part II: Show all workings in the space provided for each question below.
11. Solve the quadratic equation $2 x^{2}-8 x+3=0$, using the quadratic formula. Write your answer in EXACT simplified radical form. Quadratic Firmak [5 marks]

$$
\begin{array}{ll}
x=\frac{-(-8) \pm \sqrt{(-8)^{2}-4(2)(3)}}{2(2)} \\
x=\frac{8 \pm \sqrt{40}}{4} \\
x=\frac{\delta \pm \sqrt{4} \sqrt{10}}{4} \\
x=\frac{8 \pm 8 \sqrt{10}}{4}
\end{array}, x=\frac{4 \pm \sqrt{10}}{2}
$$

12. Algebraically find two consecutive even, natural numbers such that their product is 48 .

$$
\begin{aligned}
& 2 x, 2 x+2 \\
& 2 x(2 x+2)=48 \text { or } x, x+2 \\
& 4 x^{2}+4 x-48=0 \\
& x=\frac{-4 \pm \sqrt{4^{2}-4(4)(-48)}}{2(4)} \\
& x(x+2)=48 \\
& x^{2}+2 x-48=0 \\
& (x-6)(x+8)=0 \\
& \begin{array}{cc}
x=\frac{-4 \pm \sqrt{784}}{8} & 2 x=2(3)=6 \\
x=-4+2=2(3)+2=8
\end{array} \\
& \begin{array}{ll}
x-6=0, & x+8=0 \\
x=6 & , x>6
\end{array} \\
& x=\frac{-4 \pm 28}{8} \quad 6 \cdot 8=48 J \\
& x+2=8 \\
& x=-\frac{4-28}{8}, x=-\frac{4+28}{8} \\
& x=\frac{-32}{8}, x=\frac{24}{8} \\
& x=-4 \quad, x=3
\end{aligned}
$$

13. A cannonball is shot into the air as shown below. The height of the ball, above the ground, in metres, t seconds after being shot, is approximated by $h(t)=-5 t^{2}+15 t+12$. Algebraically determine the times when the ball is at a height of 22 m . [$\mathbf{5}$ marks]

14. A photograph 8 cm by 11 cm will be framed as shown in the diagram. The combined area of the frame and the photograph will be $\mathbf{1 8 0} \mathbf{~ c m}^{\mathbf{2}}$.
A. Set up a quadratic equation to model the total area.

B. Using the quadratic equation in part A, algebraically determine the width of the frame, \boldsymbol{x}.
\rightarrow frame, \boldsymbol{x}.

C. What are the outside dimensions of the picture frame?

$$
\begin{aligned}
& 2 x+8=2(2)+8=12 \mathrm{~m} \\
& 2 x+11=2(2)+11=15 \mathrm{~cm}
\end{aligned}
$$

