Math 2201	Chapter 7 Review	Name:
	1	

Part I: Multiple Choice – Circle the letter that corresponds with the best answer. [10 marks]

- To solve the quadratic equation $3x^2 + 11x 4 = 0$, Irene correctly factors the equation as (3x-1)(x+4) = 0. What are the solutions of the equation? A. $\frac{-1}{2}$, 4 (B.) $\frac{1}{2}$, -4 (C.) 3, -4 (D.) -3, 4 (E.) 3x 4 = 01.
 - B. $\frac{1}{3}$, -4 C. 3, -4 A. $\frac{-1}{3}$, 4

Yuko's steps for solving the quadratic equation $2x^2 - 5x - 4 = 0$ using the quadratic 2. formula are shown below. She **incorrectly** determines that the solutions are 0.64 and -3.14, to the nearest hundredth. In which step did Yuko's **first** mistake occur?

Â.	1	STEP 1	$r = \frac{-5}{\sqrt{(-5)^2 - 4(2)(-4)}}$
B.	2	5121 1	x = 2(2)
C. D.	3 4	STEP 2	$x = \frac{-5 \pm \sqrt{25 + 32}}{4}$
		STEP 3	$x = \frac{-5 \pm \sqrt{57}}{4}$
		STEP 4	x = 0.64, -3.14

3.	What	What are the roots of the quadratic equation $x^2 - 1 = 0$?			
	A. B. C. D.	-2 and -1 -2 and 0 -1 and 0 -1 and 1	(X-1)(X+1)=0 X-(=0) X+(=0 X=1 X=-1		
4.	Whick	h expression is the fa	actored form of $3x^2 + 11x - 4$?		
	A. B. C. D.	(3x + 4)(x - 1) (3x + 1)(x - 4) (3x - 1)(x + 4) (3x - 4)(x + 1)	$3x^{2}-x+13x-4$ x(3x-1)+4(3x-1) (3x-1)(x+4)		

Which values of x are solutions of the quadratic equation $x^2 - 8x = 20$? 5.

$$\begin{array}{c} \textcircled{A} & x = -2, x = 10 \\ B. & x = -10, x = 2 \\ C. & x = -8, x = -20 \\ D. & x = 8, x = 20 \end{array} \qquad \begin{array}{c} \swarrow & \swarrow & \checkmark & 20 = -3 \\ (\times + 2)(\chi - 10) = 0 \\ \chi + 2 = 0 \\ \chi + 2 = 0 \\ \chi = -2 \\ \chi = -2 \\ \chi = -2 \end{array} \qquad \begin{array}{c} \swarrow & 0 \\ \chi = 0 \\ \chi = -2 \\ \chi = -2 \end{array} \qquad \begin{array}{c} \swarrow & 0 \\ \chi = 0 \\ \chi = -2 \\ \chi = -2 \end{array} \qquad \begin{array}{c} \swarrow & 0 \\ \chi = 0 \\ \chi = -2 \\ \chi = -2 \end{array} \qquad \begin{array}{c} \swarrow & 0 \\ \chi = 0 \\ \chi = -2 \\ \chi = -2 \end{array} \qquad \begin{array}{c} \swarrow & 0 \\ \chi = 0 \\ \chi = -2 \\ \chi = -2 \end{array} \qquad \begin{array}{c} \swarrow & 0 \\ \chi = 0 \\ \chi = -2 \\ \chi = -2 \end{array} \qquad \begin{array}{c} \swarrow & 0 \\ \chi = 0 \\ \chi = -2 \\ \chi = -2 \end{array} \qquad \begin{array}{c} \swarrow & 0 \\ \chi = 0 \\ \chi = 0 \\ \chi = 0 \end{array} \qquad \begin{array}{c} \swarrow & 0 \\ \chi = 0 \\ \chi = 0 \\ \chi = 0 \end{array} \qquad \begin{array}{c} \swarrow & 0 \\ \chi = 0 \\ \chi = 0 \\ \chi = 0 \end{array} \qquad \begin{array}{c} \swarrow & 0 \\ \chi = 0 \\ \chi = 0 \\ \chi = 0 \end{array} \qquad \begin{array}{c} \swarrow & 0 \\ \chi = 0 \\ \chi = 0 \\ \chi = 0 \end{array} \qquad \begin{array}{c} \swarrow & 0 \\ \chi = 0 \\ \chi = 0 \\ \chi = 0 \end{array} \qquad \begin{array}{c} \swarrow & 0 \\ \chi = 0 \\ \chi = 0 \\ \chi = 0 \end{array} \qquad \begin{array}{c} \swarrow & 0 \\ \chi = 0 \\ \chi = 0 \\ \chi = 0 \end{array} \qquad \begin{array}{c} \swarrow & 0 \\ \chi = 0 \\ \chi = 0 \\ \chi = 0 \end{array} \qquad \begin{array}{c} \swarrow & 0 \\ \chi = 0 \\ \chi = 0 \\ \chi = 0 \end{array} \qquad \begin{array}{c} \rightthreetimes & 0 \\ \chi = 0 \\ \chi = 0 \\ \chi = 0 \end{array} \qquad \begin{array}{c} \rightthreetimes & 0 \\ \chi = 0 \\ \chi = 0 \\ \chi = 0 \end{array} \qquad \begin{array}{c} \rightthreetimes & 0 \\ \chi = 0 \\ \chi = 0 \\ \chi = 0 \end{array} \qquad \begin{array}{c} \rightthreetimes & 0 \\ \chi = 0 \\ \chi = 0 \\ \chi = 0 \end{array} \qquad \begin{array}{c} \rightthreetimes & 0 \\ \chi = 0 \\ \chi = 0 \\ \chi = 0 \end{array} \qquad \begin{array}{c} \rightthreetimes & 0 \\ \chi = 0 \\$$

6. What is the simplest form of
$$\frac{-5\pm\sqrt{75}}{5}$$
?
(A) $\pm 5\sqrt{3}$
(B) $-1\pm 5\sqrt{3}$
(C) $-1\pm\sqrt{3}$
(D) $-1\pm\sqrt{75}$
(A) $\pm 5\sqrt{3}$
(C) $-1\pm\sqrt{75}$
(C) $-1\pm\sqrt{75$

Which quadratic function has zeros of $\frac{1}{2}$ and -3? 7.

A. $f(x) = 2x^2 - 7x + 3$ B. $f(x) = 2x^2 - 5x - 3$ C $f(x) = 2x^2 + 5x - 3$ D. $f(x) = 2x^2 + 7x + 3$

$$\begin{array}{c}
x = \frac{1}{2} \quad x = -5 \\
a_{x} = (1) \quad x + 3 = 0 \\
(a_{x} - 1)(x + 3) = 0 \\
a_{x}^{2} + 6x - x - 3 = 0 \\
a_{x}^{3} + 5x - 3 = 0
\end{array}$$

What are the **solutions** of the quadratic equation $25x^2 - 36 = 0$? 8.

$$\begin{array}{l} \textcircled{A} & x = -\frac{6}{5}, \ x = \frac{6}{5} \\ B. & x = -5, \ x = 5 \\ C. & x = \frac{5}{6}, \ x = -\frac{5}{6} \\ D. & x = 6, \ x = -6 \end{array}$$

9.

A. $x^2 - 9 = 0$ $O^2 - 4(1)(-9) = 36$ B. $x^2 + 4x + 3 = 0$ $A^2 - 4(1)(3) = 16 - 12 = 4$ C. $x^2 - 3 = 0$ $O^2 - 4(1)(-3) = 12$ D. $x^2 + 4 = 0$ $O^2 - 4(1)(-3) = 12$

10. What are the **x-intercepts** of the quadratic function shown?

Answers to multiple choice.

1	2	3	4	5
6	7	8	9	10

Part II: Show all workings in the space provided for each question below.

11. Solve the quadratic equation $2x^2 - 8x + 3 = 0$, using the quadratic formula. Write your answer in EXACT simplified radical form. Quadratic formula. [5 marks]

12. Algebraically find two consecutive even, natural numbers such that their product is 48. [5 marks]

$$\begin{aligned} & 2 \times 9 = 2 \times +2 \\ & 3 \times (3 \times +2) = 48 \\ & 4 \times -48 = 0 \\ & X = -41 + 4 \times -48 = 0 \\ & X = -41 + 4 \times -48 = 0 \\ & X = -41 + 4 \times -48 = 0 \\ & X = -4 + 4 \times -48 = 0 \\ & X = -4 + 28 \\ & X = -4 \\$$

20

0=8t

13. A cannonball is shot into the air as shown below. The height of the ball, above the ground, in metres, *t* seconds after being shot, is approximated by $h(t) = -5t^2 + 15t + 12$. Algebraically determine the **times** when the ball is at a height of 22 m. **[5 marks]**

14. A photograph 8 cm by 11 cm will be framed as shown in the diagram. The combined area of the frame and the photograph will be 180 cm^2 . [7 marks]

