Math 3201 Exponential Constructed Response Problems Name: \qquad

1. A radioactive isotope decays at the rate described by the function $A(t)=600\left(\frac{1}{2}\right)^{\frac{t}{1500}}$, where t is the time in years and $A(t)$ is the amount of isotope remaining in grams.
(A) Determine the initial mass of the isotope.

$$
600 g
$$

(B) How long will it take for the isotope to be reduced to half of its original amount?

$$
1500 \text { years }
$$

(C) What is the mass of the isotope after 3000 years?

$$
\begin{aligned}
|\overline{S o g}| A(t) & =600\left(\frac{1}{2}\right)^{\frac{3000}{1500}} \\
& =600(1 / 2)^{2} \\
& =150 \mathrm{~g}
\end{aligned}
$$

2. The initial concentration of bacteria in a Peri dish was $400 \mathrm{mg} / \mathrm{mm}^{2}$. The growth of the bacteria population can be modeled by the function $P(t)=400(3)^{\frac{t}{15}}$, where t represents time in minutes. How long does it take the population to reach 10800 ?

$$
\begin{array}{ll}
t=? & \frac{10800}{t 00}=\frac{400(3)}{400} \\
P(t)=10800 & 27=3^{\frac{t}{15}} \\
3^{3}=3^{\frac{t}{15}} \\
15 \cdot 3=\frac{t}{55}+5
\end{array} \quad \begin{aligned}
& \text { or } \frac{3}{11}-\frac{1}{15} \\
& t=45
\end{aligned}
$$

3. Sharon purchased a house for $\$ 92500$, with the foresight that the market would double every 10 years. Using the function, $A(t)=92500(2)^{\frac{t}{10}}$, determine the time it would take for Sharon's home to be worth $\$ 370000$.

$$
\begin{aligned}
& t=? \\
& A(t)=370000
\end{aligned}
$$

4. Rick has been prescribed a medication that remains in his bloodstream for a specified period of time after each does. The directions on the bottle indicate that the concentration of the prescription has a half-life of 4 hours. If the situation is modeled by the function $f(t)=40\left(\frac{1}{2}\right)^{\frac{t}{4}}$, where t is time in hours and $A(t)$ is amount in $\mathrm{mg} / \mathrm{cm}^{3}$, how many hours will it take for the medication to reduce to a concentration of $5 \mathrm{mg} / \mathrm{cm}^{3}$?

$$
\begin{aligned}
& t=? \\
& x(t)=5
\end{aligned}
$$

$$
\begin{aligned}
& 5 \mathrm{mg} / \mathrm{cm}^{3 ?} \\
& \frac{5}{40}=\frac{40\left(\frac{1}{2}\right)^{\frac{t}{4}}}{40} \\
& \frac{1}{8}=\left(\frac{1}{2}\right)^{\frac{t}{4}}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{1}{2}\right)^{3}= \\
& \frac{3}{1}=\frac{t}{4} \\
& t=12
\end{aligned}
$$

5. The population of a specific type of bacteria growing in a Peri dish is modelled by the function $P(t)=700(5)^{\frac{t}{6}}$, where $P(t)$ represents then number of bacteria and t represents the time, in hours, after the initial count.

Determine the value of t when $P(t)=87500$. What does your answer mean in this

$$
t=\frac{7}{700} \frac{800(5)^{5}}{700}
$$

$$
t=18
$$

$$
\begin{aligned}
& \text { 6. } \begin{array}{l}
\text { Algebraically solve for } x: \quad 9^{2 x-1}=\sqrt[4]{27} \\
3^{2(2 x-1)}=3^{3\left(\frac{1}{4}\right)} \\
4(4 x-2)=3 \\
16 x-8=3 \\
16 x=3+8
\end{array}
\end{aligned} \quad \begin{aligned}
& 16 x=11 \\
& x=11 / 16
\end{aligned}
$$

$$
\text { 7. } \left.\begin{array}{l}
\text { Algebraically solve for } x: \\
3^{-1(x-2)}=3^{2\left(\frac{1}{3}\right)^{x-2}}=\sqrt[3]{9} \\
3^{-x+2}=3^{\frac{2}{3}} \\
3(-x+2)=\frac{2}{3} 3 \\
-3 x+6=2
\end{array}\right) \begin{array}{r}
-3 x=2-6 \\
-3 x=-4 \\
x=-4 /-3 \\
x=4 / 3
\end{array}
$$

$$
\text { 8. } \left.\begin{array}{c}
\left(2^{\text {Algebraically solve for x: }} \times\left(2^{3 x}\right)=2^{\left(2^{x-3}\right)\left(8^{x}\right)=32}\right. \\
2^{x-3+3 x}=2^{5} \\
2^{4 x-3}=2^{5}
\end{array}\right) \begin{aligned}
& 4 x-3=5 \\
& 4 x=5+3 \\
& 4 x=\frac{8}{4} \\
& x=2
\end{aligned}
$$

