\qquad
Part I: Multiple Choice. Place the correct answer in the corresponding blank at the end of this section.

Formulae: $\quad A=P(1+r t) \quad A=P(1+i)^{n}$

1. Which selection is the best model for the graph of the function $f(x)=\left(\frac{5}{4}\right)^{x}$?
A)

B)

2. Which table represents an exponential function?
(A)
(B)

(B)
$\frac{5}{3}$

(C)

3. Which equation will produce a decay curve? decreasing
(A) $y=8(3)^{\frac{x}{2}}$
(B) $y=2\left(\frac{4}{3}\right)^{x}$
(C) $y=\frac{1}{2}(6)^{x}$
(D) $y=6\left(\frac{1}{3}\right)^{x} \quad 0<5<1$
4. A coffee is sitting on Mr. McGill's desk, cooling. It cools according to the function $T=\underline{70}(0.80)^{x}$, where x is the time in minutes and T is is the temperature in degrees Celsius. What is the initial temperature of the coffee?
(A) 0

(B) 0.8
(C) 56
(D) 70

$$
T=70(0.8)^{\circ}=70(1)=70
$$

5. Using the equation from question 4 determine the temperature of the coffee after a $1 ⁄ 2$ hour. = 30 (A) 0.09
(B) 35

$$
v=70(0.8)^{30}=0.09
$$

(C) 62.6
(D) 0.4
6. Determine the equation of the exponential function represented in the table.

7. The formula describing the decay of the radioactive isotope radium-226 is: $A=$ $A_{o}\left(\frac{1}{2}\right)^{\frac{t}{1620}}$, where A is the amount of radium present at time t, A_{o} is the original quantity of radium and t is the time in years. Which statement best describes this function?
(A) Radium has a half-life of 1620 years.
(B) The amount of Radium doubles every 1620 years.
(C) The decay rate 16.2%
(D) A_{o} will decay to 50% of its original amount after 1620 seconds.
8. Select the exponential function that models the situation and find the value after the given time.
$10.025+1$
\$100 investment; 2.5\% gain in value each year; find the value after 3 years.
(A) $\quad f(x)=100(2.5)^{x}$, value $=\$ 1562.50$
$\begin{aligned} \text { (D) } f(x) & =1.025(100)^{x}, \text {, value }=\$ 1025000 \\ \text { (C) } f(x) & =0.025(100)^{x}, \text { value }=\$ 25000 \\ \text { (D) } f(x) & =100(1.025)^{x}, \text { value }=\$ 107.69\end{aligned}$
(D) $f(x)=100(1.025)^{x}$, value $=\$ 107.69$
9. Select the exponential function that satisfies the given conditions. Initial mass $=0.6 \mathrm{~g}$, doubling every 3 days.

```
(A) f(x)=0.6(3)
```

(B) $\quad f(x)=0.6(2)^{3 x}$
$y=a(b)^{\frac{x}{h}}$
(C) $f(x)=0.6(3)^{\frac{x}{2}}$
(D)
$f(x)=0.6(2)^{x} \sqrt{3}$
10. A single-cell organism doubles every 4 days. How many days will it take one organism to become a population of 512 organisms?
(A) 4.5
(B) 9
(C) 18
(D) 36
11. Use the graph to solve $2^{x+1}=3$.
(A) $\quad x=0$
(B) $x=1.5$
(C) $x=1.6$
(D) $x=3$
13. Consider this function; $y=a(b)^{x}$, where $0<b<1$. Which statement best describes the function?
(A) does not exist
(B) is decreasing
(C) is increasing
(D) is negative
14. Evaluate $f(x)=6^{1-x}$, when $x=3$.
(A) $\frac{1}{36}=6^{1-3}$
(B)
(C)
(D) $36=\frac{1}{36}$
$=6^{-2}$
(C) $12=\frac{1}{6^{3}}$
15. The number of bacteria grown in a lab increases with time according to the equation $f(x)=5200(5)^{t}$, where t is the time measured in days. After how many days will the number of bacteria be 650,000 ?
(A) $1 \quad 650000=5200(5) t$
(B) 35005
(C) 6
(D) 10

$$
\begin{aligned}
125 & =5^{t} \\
5^{3} & =5^{t}
\end{aligned}
$$

Answers to multiple choice.

1. \qquad 2.
2.

4._-
5.
6. \qquad
7.__
8.
9.
10.
11. \qquad 12. \qquad 13.
14.
15.

Part II: Constructed Response. Answer each question in the space provided. Show all workings.
16. A local zoo starts a breeding program to ensure the survival of a species of swan. They determine that the equation that describes the population growth is given by $P=40(1.15)^{n}$, where n is the time measured in years.
(A) How big is the initial population of swans purchased by the zoo?

(B) Find the expected population after 8 years.

$$
P=40(1,15)^{8}=122
$$

17. Solve for x . Show your steps.
(A) $3^{3 x+4}=3^{\prime} \cdot 3^{2 x}$

$$
\begin{gathered}
3^{x+4}=3^{1+2 x} \\
3 x+4=1+2 x \\
3 x-2 x=1-4 \\
x=-3
\end{gathered}
$$

(C) $8 \cdot 2^{x-2}=\frac{1}{32}$

$$
\begin{aligned}
& x+1=-5 \\
& x=-5-1 \\
& x=-6
\end{aligned}
$$

$$
\begin{aligned}
& (B) \quad 8^{x+1}=16^{4-x} \\
& 2^{3(x+1)}=2^{14-x)} \\
& 2^{3 x+1}=2^{16-4 x} \\
& 3 x+3=16-4 x \\
& 3 x+4 x=16^{-3} \\
& 7 x=13 \\
& x=13 / 7
\end{aligned}
$$

(D) $\frac{25^{x} \cdot 5}{5}=\frac{625}{5}$

18. The appreciation of a comic book is determined using the formula $y=3.99(1.2)^{x}$, where x is time measured in years.
(A) What is the original price of the comic book?

$$
\$ 3.99
$$

(B) Find the value of the comic in 50 years.

$$
V=3.99(1.2)^{50}=\$ 36310.75
$$

19. Determine whether the data in each table display exponential behavior. Explain why or why not.
(A)

\boldsymbol{x}	2	5	8	11
\boldsymbol{y}	480	120	30	7.5

$$
\frac{120}{480}=\frac{1}{4} \quad y \operatorname{es}
$$

No

$$
30=1 \quad b \text {-values }
$$

$$
120-\frac{1}{4} \text { are equal. }
$$

$$
\frac{7.5}{30}=\frac{1}{4}
$$

$$
\begin{gathered}
23 \\
\hline 30 \\
\frac{16}{23} \\
\frac{9}{16}
\end{gathered}
$$

20. In 2010 a person invested $\$ 25,000$. The investment grew by 4% annually and was compounded annually.
(A) Identify and correct the errors) in the function a student used to model the value of the investment since 2010. Explain your reasoning.

STUDENT'S WORK

$A(2015)=25,0000.04)^{2015}$
$A=25000(1.04)^{5}$
(B) Determine the true value of the investment in 2015.
$\$ 30416.32$

