Math 3201

Chapter 6 Review

Name:_____

Part I: Multiple Choice. Place the correct answer in the corresponding blank at the end of this section.

Formulae: A = P(1 + rt) $A = P(1 + i)^n$

1. Which selection is the best model for the graph of the function $f(x) = \left(\frac{5}{4}\right)^x$?

2. Which table represents an exponential function?

(B) $y = 2\left(\frac{4}{3}\right)^{x}$ (C) $y = \frac{1}{2}(6)^{x}$

3.

(D) $y = 6\left(\frac{1}{3}\right)^x$ OLGL

4. A coffee is sitting on Mr. McGill's desk, cooling. It cools according to the function $T = \underline{70}(0.80)^x$, where x is the time in minutes and T is is the temperature in degrees Celsius. What is the initial temperature of the coffee?

(A) 0
$$70$$

(B) 0.8 $1 = 70(0.8)^{\circ} = 70(1) = 70$
(D) 70

5. Using the equation from question 4 determine the temperature of the coffee after a $\frac{1}{2}$ hour. = 30

(A)
$$0.09$$

(B) 35
(C) 62.6
(D) 0.4
(A) 0.09
(C) 62.6
(D) 0.4

6. Determine the equation of the exponential function represented in the table.

- 7. The formula describing the decay of the radioactive isotope radium-226 is: $A = A_o \left(\frac{1}{2}\right)^{\frac{t}{1620}}$, where *A* is the amount of radium present at time *t*, A_o is the original quantity of radium and *t* is the time in years. Which statement best describes this function?
 - (A) Radium has a half-life of 1620 years.
 - (B) The amount of Radium doubles every 1620 years.
 - (C) The decay rate 16.2%
 - (D) A_o will decay to 50% of its original amount after 1620 seconds.
- 8. Select the exponential function that models the situation and find the value after the given time.

\$100 investment; 2.5% gain in value each year; find the value after 3 years.

(A)
$$f(x) = 100(2.5)^x$$
, value = \$1562.50
(B) $f(x) = 1.025(100)^x$, value = \$1025000

(C)
$$f(x) = 0.025(100)^x$$
, value = \$25 000

(D)
$$f(x) = 100(1.025)^x$$
, value = \$107.69

Select the exponential function that satisfies the given conditions. Initial 9. mass = 0.6 *g*, doubling every 3 days.

(A)
$$f(x) = 0.6(3)^{2x}$$

(B) $f(x) = 0.6(2)^{3x}$
(C) $f(x) = 0.6(3)^{\frac{x}{2}}$
(D) $f(x) = 0.6(2)^{\frac{x}{3}}$

- A single-cell organism doubles every 4 days. How many days will it take one 10. organism to become a population of 512 organisms? (A) 4.5
 - (B) 9 (C) 18
 - (D) 36
- Use the graph to solve $2^{x+1} = 3$. 11.
 - (A) x = 0
 - x = 1.5(B)

(C)
$$x = 1.6$$

x = 3 (D)

The function $y = 5^x$ passes through which of these points? 12.

(A)
$$(5,1)$$
 $(5,5)$
(B) $(-1,5)$ $(5,5)$
(C) $(1,5)$ $(5,-1)$

- 13. Consider this function; $y = a(b)^x$, where 0 < b < 1. Which statement best describes the function?
 - (A) does not exist
 - (B) is decreasing
 - (C) is increasing
 - (D) is negative
- 14. Evaluate $f(x) = 6^{1-x}$, when x = 3. (A) $\frac{1}{36} = 6^{1-5}$ (B) $\frac{1}{12} = 6^{1-5}$ (C) $12 = 5^{1-5}$ (D) $36 = 6^{1-5}$
- 15. The number of bacteria grown in a lab increases with time according to the equation $f(x) = 5200(5)^t$, where *t* is the time measured in days. After how many days will the number of bacteria be 650,000?

(A) 1
$$650000 = 5200(3)^{+}$$

(B) 3 $5200 = 5200(3)^{+}$
(C) 6 $125 = 5^{+}$
(D) 10 $125 = 5^{+}$
 $5^{3} = 5^{+}$

Answers to multiple choice.

Part II: Constructed Response. Answer each question in the space provided. Show all workings.

16. A local zoo starts a breeding program to ensure the survival of a species of swan. They determine that the equation that describes the population growth is given by $P = 40(1.15)^n$, where *n* is the time measured in years.

(A) How big is the initial population of swans purchased by the zoo?

(B) Find the expected population after 8 years. $P = 4v(1.15)^8 = 122$

17. Solve for x. Show your steps. (A) $3^{3x+4} = 3 \cdot 3^{2x}$

4O

$$3^{\times +4} = 3^{1+a_{\times}}$$

 $3\chi + 4 = 1 + a_{\times}$
 $3\chi - 2\chi = 1 - 4$
 $\chi = -3$

(C)
$$8 \cdot 2^{x-2} = \frac{1}{32}$$

 $3 \cdot 2^{x-2} = \frac{1}{32}$
 $3 \cdot 2^{x-2} = \frac{1}{32}$
 $3 + x - 2 = 3^{-5}$
 $3 + x - 2 = 3^{-5}$
 $3 + x - 2 = 3^{-5}$
 $x + 1 = 3^{-5}$
 $x + 1 = -5$
 $x + 1 = -5$
 $x = -5 - 1$
 $x = -6$

(B)
$$8^{x+1} = 16^{4-x}$$

 3^{x+1} $4^{(4-x)}$
 3^{x+1} 16^{-4x}
 $3^{x+3} = 16^{-4x}$
 $3^{x} + 4^{x} = 16^{-3}$
 $7^{x} = 13^{-4x}$
 $7^{x} = 16^{-3}$
 $7^{x} = 13^{-5}$
 $3^{x} = 13^{-5}$
 $3^{x} = 3^{-5}$
 $3^{x} = 3^{$

- 18. The appreciation of a comic book is determined using the formula $y = 3.99(1.2)^x$, where x is time measured in years.
 - (A) What is the original price of the comic book?

\$3.99

(B) Find the value of the comic in 50 years.

 $1 = 3.55(1.2)^{50} = \pm 36.30.75$

19. Determine whether the data in each table display exponential behavior. Explain why or why not.

- 20. In 2010 a person invested \$25,000. The investment grew by 4% annually and was compounded annually.
 - (A) Identify and correct the error(s) in the function a student used to model the value of the investment since 2010. Explain your reasoning.

170.04 STUDENT'S WORK $A(2015) = 25,000(0.04)^{2015}$ $A = 25000(1.04)^{5}$

\$30416.32

(B) Determine the true value of the investment in 2015.