\qquad
Part I: Multiple Choice. Place the correct answer in the corresponding blank at the end of this section.

1. What is the domain for $y=\log _{2} x$?
(A) $\quad\{x \mid x>0, x \in R\}$
(B) $\quad\{x \mid x \geq 0, x \in R\}$
(C) $\quad\{x \mid x \in R\}$
(D) $\{x \mid x>2, x \in R\}$
2. What is the domain for $y=-5 \ln x$?
(A) $\quad\{x \mid x>0, x \in R\}$
(B) $\{x \mid x \geq 0, x \in R\}$
(C) $\quad\{x \mid x \in R\}$
(D) $\{x \mid x>5, x \in R\}$
3. What is the range for $y=7 \log x$?
(A) $\quad\{\mathrm{y} \mid \mathrm{y}>0, \mathrm{y} \in R\}$
(B) $\{y \mid y \geq 0, y \in R\}$
(C) $\quad\{y \mid y \in R\}$
(D) $\quad\{\mathrm{y} \mid \mathrm{y}>7, \mathrm{y} \in R\}$
4. What is the range for $y=6 \ln x$?
(A) $\quad\{\mathrm{y} \mid \mathrm{y}>0, \mathrm{y} \in R\}$
(B) $\quad\{\mathrm{y} \mid \mathrm{y} \geq 0, \mathrm{y} \in R\}$
(C) $\quad\{y \mid y \in R\}$
(D) $\{y \mid y>6, y \in R\}$
5. What is the y-intercept for $y=2 \log _{4} x$?
(A) 0
(B) 2
(C) 4
(D) No y-intercept
6. What is the y-intercept for $y=-4 \ln x$
(A) -4
(B) 0
(C) e
(D) No y-intercept
7. Which graph best represents $y=3 \ln x$?
(A)

(B)

(C)

(D)

8. Which function represents the graph below?

(A) $y=\left(\frac{1}{5}\right)^{x}$
(B) $y=5^{x}$
(C) $y=-5 \log x$
(D) $y=5 \log x$
9. What is the x-intercept of $y=6 \log _{2} x$?
(A) 0
(B) 1
(C) 2
(D) 6
10. What is the x-intercept of $y=-8 \ln x$?
(A) -8
(B) 1
(C) e
(D) No x-intercept
11. What is the end behaviour of $y=4 \log x$?
(A) extends from QI to QII
(B) extends from QII to QI
(C) extends from QI to QIV
(D) extends from QIV to QI
12. What is the end behaviour of $y=-2 \ln x$?
(A) extends from QI to QII
(B) extends from QII to QI
(C) extends from QI to QIV
(D) extends from QIV to QI
13. What is $e^{x}=18$ in logarithmic form?
(A) $\ln x=18$
(B) $\ln 18=x$
(C) $\log _{x} 18=e$
(D) $\log _{18} x=e$
14. What is $\log _{2}\left(\frac{1}{16}\right)=-4$ in exponential form?
(A) $\quad 2^{-4}=\frac{1}{16}$
(B) $\left(\frac{1}{16}\right)^{-4}=2$
(C) $(-4)^{2}=\frac{1}{16}$
(C) $\left(\frac{1}{16}\right)^{2}=-4$
15. What is the logarithmic form of $3^{-4}=\frac{1}{81}$?
(A) $\quad \log _{3}(-4)=\frac{1}{81}$
(B) $\quad \log _{\frac{1}{81}}(-4)=3$
(C) $\quad \log _{3}\left(\frac{1}{81}\right)=-4$
(D) $\quad \log _{\frac{1}{81}} 3=-4$
16. What is the logarithmic form of $b^{e}=n$?
(A) $\log _{b} e=n$
(B) $\log _{e} b=n$
(C) $\log _{n} b=e$
(D) $\log _{b} n=e$
17. What is the value of $\log _{5} 125$?
(A) 3
(B) 4
(C) 5
(D) 25
18. What is the value of $\log _{2}\left(\frac{1}{32}\right)$?
(A) -5
(B) -4
(C) 4
(D) 5
19. What is the value of x, given $2^{x}=6$?
(A) 0.39
(B) 0.48
(C) 2.58
(D) 3
20. What is the value of x, given $3^{x-1}=14$?
(A) $\frac{\log 14}{\log 3}+1$
(B) $\frac{\log 14}{\log 3}-1$
(C) $\frac{\log 3}{\log 14}-1$
(D) $\frac{\log 3}{\log 14}+1$
21. What is the value of x, given $e^{x}=4$?
(A) 0.6
(B) 1.4
(C) 2.7
(D) 54.6
22. What is the value of $\log _{6} 25$?
(A) $\quad 0.5566(B) \quad 1.5069(C) \quad 1.7964(D) \quad 4.1667$
23. What is the value of $\log _{4} 27$?
(A) $\quad 0.4206(B)$
1.4533 (C)
2.3774 (D)
6.75
24. What is $2 \log _{2} 4+\log _{2} 2$ as a single logarithm?
(A) $\log _{2} 4$
(B) $\log _{2} 8$
(C) $\log _{2} 16$
(D) $\log _{2} 32$
25. What is $2 \log _{3} 5+3 \log _{3} 2$ as a single logarithm?
(A) $\quad \log _{3} 60$
(B) $\quad \log _{3} 1.7$
(C) $\quad \log _{3} 150$
(D) $\quad \log _{3} 200$
26. What is the value of $\log _{8} 16+\log _{8} 32$?
(A) $-\frac{1}{3}$
(B) $\frac{1}{3}$
(C) -3
(D) 3
27. What is the value of $\log _{4} 4+\log _{2} 8$?
(A) 3
(B) 4
(C) 5
(D) 6
28. Which expression is equivalent to $\log _{2} 16$?
(A) $2 \log 8$
(B) $\log _{2} 8+\log _{2} 2$
(C) $\log _{2} 20-\log _{2} 4$
(D) $\log 2$
29. Which expression is equivalent to $\log 8$?
(A) $2 \log 4$
(B) $4 \log 2$
(C) $3 \log 2$
(D) $\frac{1}{2} \log 16$
30. The logarithmic regression equation for the height of a tree is $y=6.099+(6.108) \ln x$, where y is the height of the tree and x is the time in years. What is the height of the tree after 60 months?
(A) 15.9
(B) 17.0
(C) 10.4
(D) 31.1
31. The energy released during an earthquake can be determined on the Richter scale using the formula $\log E=4.4+1.5 R$, where E is the energy released in joules and R is the magnitude. How much energy is released for an earthquake with a magnitude of 7 ?
32. The pH scale is used to measure the acidity of a solution. The $\mathrm{pH}, p(x)$, is defined by the equation $p(x)=-\log x$, where the concentration of hydrogen ions, x, in a solution is measured in moles per litre ($\mathrm{mol} / \mathrm{L}$).
(i) Black coffee has a pH of 5 . What is its hydrogen ion concentration?
(ii) Baking soda has a pH of 9. In terms of concentration, how much more acidic is black coffee than baking soda?
33. Write $2 \log _{5} 3+\log _{5} 6-\log _{5} 27$ as a single \log and then evaluate.
34. Write $\log _{3} 27-\log _{3} 3+2 \log _{3}\left(\frac{1}{9}\right)$ as a single log and then evaluate.
35. Write $3 \log _{3} 9-6 \log _{3} 2$ as a single log and then evaluate.
36. Write $\log _{4} 5+\frac{1}{2} \log _{4} 16-\log _{4} 1.25$ as a single log and then evaluate.
37. Write $\log _{2} 35-\log _{2} 7+\log _{2} 6.4$ as a single \log and then evaluate.
38. Solve each of the following equations for x :
(A) $4^{x+1}=52$
(B) $\quad 9^{2 x-3}=5$
(C) $\quad 2^{x+3}=5^{2 x-1}$
(C) $e^{3 x+2}=34$
39. Lori invests $\$ 9000$ in her grandchild's college fund. The fund grows at a rate of 8\% per year compounded monthly. How long will it take the fund to grow to \$20 000.
40. The population of coyotes in NL is given by the function $P(t)=25(3)^{\frac{t}{4}}$, where $P(t)$ is the number of coyotes and t is the time in years. How long will it take for the population to reach 258 animals?
41. Joshua invests $\$ 500$ into an account that pays 5% interest compounded quarterly. Write an equation to represent this situation and then use it to determine the how long will it take for his investment to reach $\$ 900$?
42. Cesium-137 has a half-life of 30 years. If the initial mass of the cesium-137 were 700 mg , how long would it take to decrease to 100 mg ?
43. Sheldon's solution to a problem is shown below. Identify his mistakes and provide a correct solution:
$2 \log _{2} 5-\log _{2}\left(\frac{4}{5}\right)+\frac{1}{2} \log _{2} 16$
$=\log _{2} 5^{2}-\log _{2}\left(\frac{4}{5}\right)+\log _{2}\left(\frac{16}{2}\right)$
$=\log _{2} 25-\log _{2}\left(\frac{4}{5}\right)+\log _{2} 8$
$=\log _{2}\left(25 \times \frac{4}{5} \times 8\right)$
44. An advertising agency has determined that the number of items sold is related to the amount of money spent on advertising. A logarithmic regression was performed and the results were as follows:

LnReg
$y=a+b \ln x$
$a=1500$
$b=315$
(A) Write the equation based on the result above.
(B) Use the equation to determine the number of items that will be sold if $\$ 10000$ is spent on advertising.

Answers:

1)	A	$2)$	A	$3)$	C	4)	C
5)	D	6)	D	$7)$	A	$8)$	C
9)	B	$10)$	B	$11)$	D	$12)$	C
13)	B	$14)$	A	$15)$	C	$16)$	D
17)	A	$18)$	A	$19)$	C	$20)$	A
21)	B	$22)$	C	$23)$	C	$24)$	D
25)	D	$26)$	D	$27)$	B	$28)$	B
29)	C	$30)$	A				

31) $E=10^{14.9}$
32) i) 10^{-5} or 0.00001 ii) 10^{-9} or 0.000000001

It is 10^{4} times more acidic (10 000)
33) $\log _{5} 2=0.4307$
34) $\log _{3}\left(\frac{1}{9}\right)=-2 \quad$ 35) $\log _{3}\left(\frac{729}{64}\right)=2.2$
36) $\log _{4} 16=2$
37) $\log _{2} 32=5$
38) (a) $1.8502(\mathrm{~b}) \quad 1.8662(\mathrm{c}) \quad 1.4605(\mathrm{~d}) \quad 0.5088$
39) 120 months (10 years) 40) 8.5 years 41) ~ 16 years
42) 7.63 years
43) Step 1: Divided by 2 instead of having exponent of $\frac{1}{2}$

Step 3: Multiplied the 25 and the $\frac{4}{5}$ instead of dividing

$$
\begin{aligned}
& 2 \log _{2} 5-\log _{2}\left(\frac{4}{5}\right)+\frac{1}{2} \log _{2} 16 \\
& =\log _{2} 5^{2}-\log _{2}\left(\frac{4}{5}\right)+\log _{2} 16^{\frac{1}{2}} \\
& =\log _{2} 25-\log _{2}\left(\frac{4}{5}\right)+\log _{2} 4 \\
& =\log _{2}\left(25 \div \frac{4}{5} \times 4\right) \\
& =\log _{2} 125
\end{aligned}
$$

44) (a) $y=1500+315 \ln x$
(b) 4401 items
