\qquad
Part I: Multiple Choice. Place the correct answer in the corresponding blank at the end of this section.

1. Which function below has the greatest amplitude?
(A) $y=\underline{a} \sin 3\left(x+90^{\circ}\right)+\frac{d}{5}$
(B) $y=\underline{3} \sin 2\left(x-90^{\circ}\right)-3$
(C) $y=\frac{1}{3} \sin \left(x+90^{\circ}\right)-1$
(D) $y=\left(\sin 0.5\left(x-90^{\circ}\right)\right.$
2. Which function has the greatest period?
(A) $\quad y=2 \sin 3\left(x+90^{\circ}\right)+5360 / 3=120$
(B) $y=3 \sin 2\left(x-90^{\circ}\right)-3360 / 2=180$
(C) $y=\frac{1}{3} \sin \left(x+90^{\circ}\right)-1 \quad 360 / 1=360$
(D) $y=\sin 0.5\left(x-90^{\circ}\right) \quad 360 / 0.5=720$
3. Which function has the greatest maximum value? $m<x=d+a$
(A) $y=2 \sin 3\left(x+90^{\circ}\right)+5 \quad 5+2=7$
(B) $y=3 \sin 2\left(x-90^{\circ}\right)-3 \quad-3+3=0$
(C) $y=\frac{1}{3} \sin \left(x+90^{\circ}\right)-1 \quad-1+1 / 3=-2 / 3$
(D) $\mathrm{y}=\left(\sin 0.5\left(\mathrm{x}-90^{\circ}\right)\right.$
$0+1=1$
4. What is the amplitude for the following function: $y=3 \sin 2\left(x+90^{\circ}\right)-1$
(A) 2
(B) 3
(C) 4
(D) 5
5. What is the period for the following function: $\mathrm{y}=\cos \frac{1}{\frac{1}{3}} \mathrm{x}+12$
$\begin{array}{ll}\text { (A) } 180^{\circ} \\ \text { (B) } 360^{\circ} \\ \text { (C) } 720^{\circ} & \text { period }=\frac{360^{\circ}}{\frac{1}{3}}=360^{\circ} \cdot 3=1080^{\circ}\end{array}$
6. What is the midline of the following function: $y=0.5 \sin (x-2)+0$
(A) $y=-2$
(B) $\mathrm{y}=0.5$
(C) $\mathrm{y}=0$
(D) $y=2$
7. What is the range of the following function: $y=3 \sin 2\left(x+90^{\circ}\right)-1$
(A) $\{y \mid-3 \leq y \leq 3, y \in R\}$
(B) $\{y \mid-2 \leq y \leq 4, y \in R\}$
(C) $\{y \mid-4 \leq y \leq 2, y \in R\}$
(D) $\{y \mid y \in R\}$
8. What is the domain of the following function: $y=0.5 \sin (x-2)$
(A) $\{x \mid-3 \leq x \leq-1, x \in R\}$
(B) $\{x \mid-0.5 \leq x \leq 0.5, x \in R\}$
(C) $\{x \mid-2 \leq x \leq 2, x \in R\}$
(D) $\{x \mid x \in R\}$

Part II: Constructed Response. Answer each question in the space provided. Show all workings.
9. What is the amplitude of the following function: $y=\frac{2}{5} \cos (x-\pi)$

$$
\frac{2}{5}
$$

10. What is the midline of the following function:

$$
y=-5
$$

$$
y=5 \sin 1.5\left(x+60^{\circ}\right)-5
$$

11. What is the range of the following function:

$$
y=10 \cos 4\left(x-180^{\circ}\right)+2
$$

$$
\begin{aligned}
& \max =2+10=12 \\
& \min =2-10=-8
\end{aligned} \quad\{y \mid-8 \leq y \leq 12, y \in R\}
$$

12. Match each graph with the corresponding equation. Explain your answers:
A (i) $y=2 \cos \left(x-120^{\circ}\right)+\underline{4}$
ii) $y=2 \cos \left(x-60^{\circ}\right)+\underline{4}$
iii) $y=2 \cos \left(x+60^{\circ}\right)+\underline{4}$
iv) $y=2 \cos \left(x-120^{\circ}\right)$
v) $y=2 \cos \left(x-60^{\circ}\right)$
vi) $\mathrm{y}=2 \underline{\cos \left(\mathrm{x}+60^{\circ}\right)}$
$C=120^{\circ}$

13. Describe the graph of the following function by stating the amplitude, equation of the midline, range and period.
amplitude: $\frac{1}{10}$ or 0.1

$$
y=\frac{1}{10} \sin (2 x)+3.5
$$

mid line: $y=3.5$

$$
\max : 3.5+0.1=3.6
$$

$$
\text { min: } 3.5-0.1=3.4
$$

$$
\text { period }=\frac{360^{\circ}}{2}=180^{\circ}
$$

14. The following graph represents the rise and fall of sea level in part of the Bay of Fundy, where t is the time, in hours, and $h(t)$ represents the height relative to the mean sea level.

(A) What is the range of the tide levels?

$$
\{y 1-6.5 \leq y \leq 6.5, y \in R\}
$$

(B) What does the equation of the midline represent in the graph?

$$
y=0 \quad \text { Hel } \quad \text { tide }
$$

(C) What is the period of the graph?

$$
12 \text { hours. }
$$

$36 D^{\circ}=24^{(D)} \quad \begin{aligned} & \text { The equation of the sinusoidal function is represented by: } h(t)=6.5 \sin \frac{\pi}{6} t . \\ & \text { Calculate the period from the equation and compare it to your answer in c. }\end{aligned}$

15. The temperature of an air-conditioned home on a hot day can be modelled using the function $t(x)=1.5 \cos \left(15^{\circ} x\right)+20$, where x is the time in minutes after the air conditioner turns on and t (x) is the temperature in degrees Celsius.
(A) What are the maximum and minimum temperatures in the home?

$$
\begin{aligned}
& \max =d+a=20+1.5=21.5^{0} \\
& \min =d-a=20-1.5=18.5^{0}
\end{aligned}
$$

(B) What is the temperature 10 minutes after the air conditioner has been turned on?

$$
\begin{aligned}
t(10) & =1.5 \cos \left[15^{\circ}(10)\right]+20 \\
& =18.7^{\circ}
\end{aligned}
$$

(C) What is the period of the function? How would you interpret this value in this context?

$$
\text { period }=\frac{360^{\circ}}{15^{\circ}}=24 \text { minutes }
$$

and warm back up again.

