\qquad

4.1 Estimating Roots

The concept of square root and cube root was developed earlier and will now be extended to roots including the $n^{\text {th }}$ root using the notation:
$\sqrt[n]{x}$, where n is the index and x is the radicand

It should be emphasized that when there is no numerical index stated, the value of the index is 2 . For example, $\sqrt{36}$ indicates a square root with an index of 2 .

Since $32=9,3$ is the square root of 9 . So we write $3=\sqrt[0]{9}$.

Since $3^{3}=27,3$ is the cube root of 27 . So we write $3=\sqrt[9]{27}$.
Since $3^{(4)}=81,3$ is the fourth root of 81 . So we write $3=\sqrt[4]{81}$.

How could you write 5 as a square root? $5=\sqrt{25}$

A cube root? $5=\sqrt[3]{125}$

A fourth root

$$
5=\sqrt[4]{625}
$$

There is a relationship between the power and the index or the root. What is it?

$$
\text { index } x=\text { power }
$$

Example 1:

If $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$, what would be the index be for $\sqrt[x]{\frac{16}{81}}=\frac{2}{3}$

$$
x=4
$$

Example 2:
Identify the index and the radicand for each of the following:
(A) $\sqrt[3]{5}$

(B) $\sqrt[7]{17}$

(C) $\sqrt{28}$
index: 2
radicand: 28

Estimating Roots Using Calculators
In Grade 9, you used upper and lower benchmarks to approximate square roots of nonperfect square rational numbers. This strategy can be adapted to approximate the nth root of rational numbers.

For example, to approximate $\sqrt[3]{10}$, students should identify the closest perfect cubes $\sqrt[3]{8}=$ 2 and $\sqrt[3]{27}=3$.

Since 10 is closer to 8 , the value of $\sqrt[3]{10}$ would be closer to 2 .

Students can select numbers close to 2 and check with a calculator:

$$
\begin{aligned}
& 2.1^{3}=9.261 \quad \sqrt[3]{10} \sim 2.155 \\
& 2.2^{3}=10.648 \\
& (2.19)^{3}=10.5 \\
& (2.16)^{3}=10.077 \\
& 2.15)^{3}=9.93 \\
& (2.155)^{3}=10.007
\end{aligned}
$$

Example 3:
Determine the approximate root of the following:
(A) $\sqrt{20} \sqrt{16}=4, \sqrt{25}=5 \quad(4.48)^{2}=20.07$

$$
\begin{array}{ll}
(4.4)^{2}=19.36 & (4.475)^{2}=20.02 \\
(4.5)^{2}=20.25 & \sqrt{20} \sim 4.475 \\
(4.45)^{2}=19.8 & \\
(4.47)^{2}=19.98 &
\end{array}
$$

(B)

$$
\begin{aligned}
& \sqrt[3]{16} \quad \sqrt[3]{8}=2 \quad \sqrt[3]{27}=3 \\
& (2.5)^{3}=15.625 \quad \sqrt[3]{16} \sim 2.52 \\
& (2.6)^{3}=17.576 \quad 3 \\
& (2.51)^{3}=15.81 \\
& (2.52)^{3}=16.003
\end{aligned}
$$

(c) $\sqrt[2]{50} \sqrt[3]{27}=3 \sqrt[3]{64}=4$

$$
(3.685)^{5}=50.04 \quad \therefore \sqrt[3]{50}=3.685
$$

