### 5.4 Interpreting and Sketching Graphs

## Discrete vs. Continuous Data

Whether we connect the points or not depends on whether the data is discrete or continuous.

Discrete Data: no values of the independent variable exist in between those given in the table or on the graph.

Consider the price of apples from a local convenience store:

| \# of apples | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Cost $(\$)$ | 0.75 | 1.50 | 2.25 | 3.00 | 3.75 |

Since we cannot buy 0.5 apples or 2.3 apples, or in other words, we cannot use values in between those given in the table, the data is discrete. On a graph, these data points would not be connected.

Continuous Data: values of the independent variable exist in between those given in the table or on the graph.

Now consider the the walk to that convenience store:

| Time (s) | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Distance walked (m) | 0.5 | 1 | 1.5 | 2 | 2.5 |

Since we have to walk 0.9 meters before we can walk 1 meter, we can use values in between those given in the table. This data is continuous. On a graph, these data points are connected.

Examples of discrete and continuous graphs:
Which one is which?



## Graphing a Set of Data

Steps

- Determine the independent and dependent variables.
- Label the independent variable on the horizontal axis and the dependent variable on the vertical axis.
- Choose an appropriate scale for each axis.
- Plot the data points.
- Determine whether the data is discrete or continuous.
i. If discrete, do NOT connect the points.
ii. If continuous, connect the points.
- Give your graph a title, and make sure that each axis is clearly labeled with a name and a unit.


## Example 1:

The following data represents the sales of the new Hey Rosetta! song on iTunes in the Corner Brook area during a seven day period after its release.

| Day | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# Sold | 5 | 7 | 9 | 11 | 13 | 15 | 17 |

(A) Explain why the relation is a function.

No repetitions of the independent var liable.
(B) Is the data continuous or discrete data? Explain why.


 $1 / 2$ sony 11
(C) Draw a graph to represent the data. Should you connect the data points?

$$
\begin{gathered}
\text { Songs } \\
\text { sold }
\end{gathered}
$$



## Example 2:

A child is building a tower by stacking wooden blocks. The table shows how the height of the stack changes as more blocks are added.

| \# of blocks | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Height of Tower (cm) | 1.5 | 3.0 | 4.5 | 6 | 7.5 |

(A) Explain why the relation is a function.
(B) Is the data continuous or discrete data? Explain why.
(C) Draw a graph to represent the data. Should you connect the data points?


