Math 1201

5.6B Rate of Change \& Intercepts

Rate of Change

The rate of change of a relation is defined as the slant, or the change in the dependent variable over the change in the independent variable. The greater the slant of a line on a graph, the greater the rate of change:
steep slant - larger rate of change
 no slant - no rate of change or 0

Rates of change can be positive or negative:
positive rate of change - up the hill from left to right
negative rate of change - down the hill from left to right

Example 1:

The graph shows Mitchell leaving home at point A and going to a party at point F .

(A) Over what interval was the slowest speed?

(B) Over what interval was the fastest speed?

$$
E-F \quad 30 m \cdot n-40 m \cdot h
$$

(C) Which point represents when he turned around to go back home?

$$
B \quad 5 \text { min. mark }
$$

(D) Explain what was he doing from 25-30 minutes.

If we go back to the example of the original example from 5.6A, where the cost of a car rental is $\$ 60$, plus $\$ 20$ for every 100 km driven, we would get:

$$
\begin{array}{r}
\operatorname{roc}=\frac{\$ 20}{100 \mathrm{~km}} \\
\operatorname{roc}=\$ 0.20 / \mathrm{km}
\end{array}
$$

We can now make an equation that represents the cost of renting the car for any trip as:

(A) How much will cost to rent the car and drive 800 km ? BEDMAS

$$
\begin{array}{lll}
d=800 & C(d)=0.2 d+60 \\
C=? & C(800) & =0.2(800)+60 \\
& & C(800)=160+60 \\
& & C(800)=\$ 220
\end{array}
$$

(B) How many kilometers will you have driven if the rental costs $\$ 600$?

$$
\left.\left.\begin{array}{cc}
C=\$ 600 & C=0.2 d+60 \\
d=? & 600=0.2 d+60 \\
\text { Calculating Rate of Change } \\
\text { Steps: }
\end{array}\right] \begin{array}{l}
500=0.2 d
\end{array}\right] \frac{540}{5.2}=\frac{2.2 d}{2.2} .2 d .
$$

Steps:

- Pick any two points that lie on a line.
- Between the two points, determine the change in value of theqdependent variable.
- Between the two points, determine the change in value of the dependent variable.
- Calculate the rate of change by dividing the change in value of the dependent variable by the change in value of the independent variable.

Example 2:
A water tank on a farm near Cormack holds 6000 L . Graph A represents the tank being filled at a constant rate and Graph B represents the tank being emptied at a constant rate.

Graph A
Filling a Water Tank

$$
\begin{aligned}
\text { roc } & =\frac{1 i 5 e}{r 4 n}=\frac{2000 L}{40 \mathrm{~m} \cdot \mathrm{~m}} \\
& =50 \mathrm{~L} / \mathrm{m} \cdot \mathrm{~m}
\end{aligned}
$$

Graph B
Emptying a Water Tank

$$
\begin{aligned}
\text { rOC } & =\frac{\text { risc }}{r L_{n}}=\frac{-2000 \mathrm{~L}}{2 \mathrm{~m} \cdot \mathrm{~L}} \\
& =-100 \mathrm{~L} / \mathrm{m} \cdot \mathrm{~L}
\end{aligned}
$$

(A) Identify the independent and dependent variables.
independent: time
dependent: Volunne
(B) Determine the rate of change of each relation, then describe what it represents.

$$
\begin{aligned}
\Omega C & =\frac{2000 \mathrm{~L}}{40 \mathrm{~m} \cdot \mathrm{~h}} & \quad 10 C & =\frac{-2000 \mathrm{~L}}{20 \mathrm{~m} \cdot \mathrm{~h}} \\
& =50 \mathrm{~L} / \mathrm{m} \cdot \mathrm{~L} & & =-100 \mathrm{~L} / \mathrm{min}
\end{aligned}
$$

Example 3:
Each graph below shows the temperature, T, degrees Celsius, as a function of time, t hours, for two locations. What is the rate of change for each graph?

Temperature in Location A

$$
\begin{aligned}
\text { COL } & =\frac{\text { rise }}{14 h} \\
& =\frac{5^{\circ} \mathrm{C}}{4 h} \\
& =1.25^{\circ} \mathrm{ch} / h
\end{aligned}
$$

Temperature in Location B

* $\operatorname{DC}=\frac{\text { rise }}{\operatorname{ran}}=\frac{-10^{\circ} \mathrm{C}}{5 \mathrm{~h}}=-2^{\circ} \mathrm{C} / \mathrm{h}$

$$
\begin{aligned}
& r_{0}=\frac{-10^{\circ} \mathrm{L}}{5 L} \\
& r_{0}=-2^{\circ} \mathrm{ch}
\end{aligned}
$$

Intercepts
Intercepts are points where a graph crosses the horizontal or vertical axis.
Horizontal Intercept: where a graph crosses the horizontal axis or x-axis.
Vertical Intercept: where a graph crosses the vertical axis or y-axis.
Example 4:
The graph below shows the fuel consumption of a scooter with a full tank of gas at the beginning of a journey.
(A) Write the coordinates of the points where the graph intersects the axes. Determine the vertical and horizontal intercepts. What do these points represent?

Volume of Gas in a Scooter

(B) What are the domain and range of the function?

Textbook Questions: page 319-323 \#4, 5, 7, 8, 9, 10, 12, 16

