### 6.2 Slopes of Parallel and Perpendicular Lines

Parallel Lines: lines that never meet.


Perpendicular Lines: lines that meet at a $90^{\circ}$ angle.


What is the relationship between the slopes of parallel lines? Consider the parallel lines shown in the graph:

$$
\begin{aligned}
& \text { Slope }_{\overline{A B}}=\frac{\text { rise }}{\text { run }}=\frac{7}{5} \\
& \text { Slope }_{\overline{C A}}=\frac{r_{i s e}}{r_{u n}}=\frac{7}{5} \\
& 10 \\
& \hline
\end{aligned}
$$

What is the relationship between the slopes of perpendicular lines? Consider the perpendicular lines shown in the graph:


Slope $\overline{A_{B}}=\frac{\text { rise }}{\text { run }}=\frac{4}{3}$

$$
\text { Slope }_{C D}=\frac{\text { rise }}{r_{m}}=\frac{3}{-4}=-\frac{3}{4}
$$

$$
\frac{4}{3} \times\left(-\frac{3}{4}\right)=-\frac{12}{12}=-1
$$



Negative Reciprocal: two numbers, $a$ and $b$, are negative reciprocals if $a \cdot b=-1$

Summary

- Parallel Lines have equal slope.
- Perpendicular Lines have slopes that are negative reciprocals.

Example 1:
Prove $\overline{\mathrm{MH}}$ and $\overline{\mathrm{AT}}$ are parallel:

$$
\begin{aligned}
& m_{\bar{m} H}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-2-3}{0-(-2)}=-\frac{5}{2} \\
& m_{\overline{A T}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{0-5}{5-3}=\frac{-5}{2} \\
& \text { sue slope } \therefore \overline{m H} \text { \&h } \overline{\text { AT }}
\end{aligned}
$$

## Example 2:

Prove that $\overline{\mathrm{AD}}$ and $\overline{\mathrm{DC}}$ are perpendicular:

## Example 3:

The slope of $\overline{\mathrm{AB}}$ is $-\frac{4}{5}$. The slope of $\overline{\mathrm{CD}}$ is $\frac{w}{35}$. Given $\overline{\mathrm{AB}}$ is parallel to $\overline{\mathrm{CD}}$, determine the value of $w$.

$$
\begin{aligned}
& m_{\overline{A B}}=m_{\bar{C}} \\
& -\frac{4}{5}=\frac{\omega}{35} \\
& 5 \omega=-140 \\
& \frac{5 \omega}{5}=-\frac{140}{5} \\
& \omega=-28
\end{aligned}
$$

Example 4:
The slope of $\overline{\mathrm{AB}}$ is 3 . The slope of $\overline{\mathrm{CD}}$ is $\frac{x}{12}$. Given $\overline{\mathrm{AB}}$ is perpendicular to $\overline{\mathrm{CD}}$, determine the value of $x$.
If $\overline{A B} \perp \overline{C D}$, then $m_{\overline{A B}}=-\frac{1}{3}$

$3 x=-12$

$$
\begin{aligned}
\frac{3 x}{3} & =\frac{-12}{3} \\
x & =-4
\end{aligned}
$$

Example 5:
Line $\overline{\mathrm{AB}}$ has a slope of 2 . Line $\overline{\mathrm{CD}}$ is parallel to line $\overline{\mathrm{AB}}$. The points $(1, k)$ and $(4,12)$ lie on line $\overline{\mathrm{CD}}$. Determine the value of $k$.


Example 6:
Is $\triangle \mathrm{ABC}$ a right triangle? Justify your answer.

$$
\begin{aligned}
& \text { Right } \triangle \rightarrow 90^{\circ} \\
& m_{\overline{A_{B}}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{4-2}{4-(-4)} \\
& =\frac{2}{8} \\
& =\frac{1}{4}=-\frac{\top}{4} \\
& \triangle A B C \text { is right. }
\end{aligned}
$$

