Math 1201 6.2 Slopes of Parallel and Perpendicular Lines

Parallel Lines: lines that never meet.

Perpendicular Lines: lines that meet at a 90° angle.

What is the relationship between the slopes of parallel lines? Consider the parallel lines shown in the graph:

What is the relationship between the slopes of perpendicular lines? Consider the perpendicular lines shown in the graph:

Summary

- Parallel Lines have equal slope.
- **Perpendicular Lines** have slopes that are negative reciprocals.

Example 1:

Prove $\overline{\text{MH}}$ and $\overline{\text{AT}}$ are parallel:

Example 2:

Prove that \overline{AD} and \overline{DC} are perpendicular:

Example 3:

The slope of \overline{AB} is $-\frac{4}{5}$. The slope of \overline{CD} is $\frac{w}{35}$. Given \overline{AB} is parallel to \overline{CD} , determine the value of w.

$$M_{\overline{AB}} = M_{\overline{CB}}$$

$$-\frac{4}{5} \times \frac{1}{35}$$

$$5w = -140$$

$$\frac{5w}{5} = -140$$

$$\frac{5w}{5} = -140$$

$$\frac{5w}{5} = -140$$

$$\frac{5w}{5} = -28$$

Example 4:

The slope of \overline{AB} is 3. The slope of \overline{CD} is $\frac{x}{12}$. Given \overline{AB} is perpendicular to \overline{CD} , determine the value of x.

Example 5:

Line \overline{AB} has a slope of 2. Line \overline{CD} is parallel to line \overline{AB} . The points (1, *k*) and (4, 12) lie on line \overline{CD} . Determine the value of *k*.

$$m = \frac{1}{2} - \frac{1}{x_{2} - x_{1}}$$

$$a = \frac{1}{2} - \frac{1}{4} - \frac{1}{4}$$

$$k = \frac{1}{2} - \frac{1}{4}$$

$$k = \frac{1}{4} - \frac{1}{4}$$

$$k = \frac{1}{4} - \frac{1}{4}$$

Example 6:

Is \triangle ABC a right triangle? Justify your answer.

Textbook Questions: page 348 - 350 #3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 16, 17