Math 1201 6.5 Slope-Point Form of the Equation for a Linear Function

Slope-Point Form

This form of a linear function consists of the slope, m, and one other point on the line, (x_1, y_1) . This equation actually comes directly from the formula for finding the slope of a line:

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Instead of calling the second point (x_2, y_2) , we simply call it (x, y):

The equation of a line that passes through $P(x_1, y_1)$ and has slope *m* is:

$$y - y_1 = m(x - x_1)$$

Where m is the slope of the line and and (x_1, y_1) is any point on that line.

Example 1:

Identify the slope and a point on the line for each of the following equations and then graph the resulting line: $(-\gamma) = \infty (\chi - \chi)$

(A)
$$y-3 = 2(x-1)$$

 $M = 2 rise$
 $l rise$
 $(x_1)(1) = (1)3$

(B)
$$y + 6 = -\frac{1}{4}(x - 5)$$

 $m = -\frac{1}{4} = -\frac{1}{4}r^{1/2}s^$

Example 2:

Write the equation of the line given the following information:

(A) The line has a slope of $\frac{1}{2}$ and passes through (-3, 6).

$$\gamma - 6 = \frac{1}{2}(x+3)$$

(D) The line passes through the point (2,5) and is perpendicular to $y = -\frac{1}{4}x + 9$. Perpendicular lines have slopes that are negative reciprocals. M = 4 $\sqrt{-5} = 4(x-2)$

Changing from Slope-Point to Slope-Intercept Form

Example 3:

(A) Write an equation in slope-point form:

(B) Write the equation from part (A) in slope-intercept form: $\sqrt{-m} \times +b$

Example 4: (just touches)

The line \overrightarrow{BD} is tangent to the circle at point A(2, 4). If the centre of the circle is C(-1, 1), write the equation of the tangent line \overrightarrow{BD} .

Example 5:

The graph shown below is made up of linear segments A, B and C. Write an equation in slope-point form for the line that contains each segment.

Textbook Questions: page 372 -374 #4, 5, 6(a, b), 7, 8, 9, 11, 12, 20, 22, 19, 20