6.5 Slope-Point Form of the Equation for a Linear Function

Slope-Point Form
This form of a linear function consists of the slope, \boldsymbol{m}, and one other point on the line, $\left(x_{1}, y_{1}\right)$. This equation actually comes directly from the formula for finding the slope of a line:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Instead of calling the second point $\left(x_{2}, y_{2}\right)$, we simply call it (x, y) :

$$
\begin{aligned}
& m=\frac{Y-Y_{1}}{x-x_{1}} \\
& m\left(x-x_{1}\right)-\frac{y-l_{1}}{\left(y_{1}-x_{1}\right)}\left(x-x_{1}\right) \\
& m\left(x-x_{1}\right)=Y-Y_{1}
\end{aligned}
$$

The equation of a line that passes through $\mathrm{P}\left(x_{1}, y_{1}\right)$ and has slope m is:

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Where \boldsymbol{m} is the slope of the line and and $\left(\boldsymbol{x}_{\mathbf{1}}, \boldsymbol{y}_{\mathbf{1}}\right)$ is any point on that line.

$$
\begin{aligned}
& \text { Note } x_{1} \text { i } y \text {, will have the opposite } \\
& \text { sign in the equation. }
\end{aligned}
$$

Example 1:
Identify the slope and a point on the line for each of the following equations and then graph the resulting line:

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

(A)

$$
\begin{gathered}
y-3=2(x-1) \\
m=\frac{2}{1} \text { rise } \\
\left(x_{1}, y_{1}\right)=(1,3)
\end{gathered}
$$

(B)

$$
\begin{aligned}
& y+6=-\frac{1}{4}(x-5) \\
& m=-\frac{1}{4}=-\frac{1}{4} \text { rise } \\
& \left(X_{1}, Y_{1}\right)=(5,-6)
\end{aligned}
$$

Example 2:
Write the equation of the line given the following information:
(A) The line has a slope of $\frac{1}{2}$ and passes through $(-3,6)$.

$$
y-6=\frac{1}{2}(x+3)
$$

(B) The line passes through $(-2,6)$ and $(4,-6)$.

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
m & =\frac{-6-6}{4-(-2)} \\
& =\frac{-12}{6}
\end{aligned}\left[\begin{array}{l}
=-2 \\
(-2,6): y-6=-2(x+2) \\
(4,-6): y+6=-2(x-4)
\end{array}\right.
$$

(C) The line passes through $(4,10)$ and is parallel to the line $y=2 x-4$. Parallel lines have $X_{1} \backslash / 1$
x_{1} ll m Parallel lines have the sine slope.

$$
\begin{aligned}
& m=2 \\
& \therefore y-10=2(x-4)
\end{aligned}
$$

$X_{1} Y$
(D) The line passes through the point $(2,5)$ and is perpendicular to $y=-\frac{1}{4} x+9$. Perpendicular lines have slopes the are regatue reciprocals.

$$
\begin{aligned}
\therefore m & =4 \\
y-5 & =4(x-2)
\end{aligned}
$$

Changing from Slope-Point to Slope-Intercept Form
Example 3:
(A) Write an equation in slope-point form:

$$
\begin{aligned}
& m=\frac{3}{4} \\
& \left(x_{1}, y_{1}\right)=(4,1) \\
& y-1=\frac{3}{4}(x-4)
\end{aligned}
$$

(B) Write the equation from part (A) in slope-intercept form:

$$
\begin{aligned}
& y-1=\frac{3}{4}(x-4) \\
& y=\frac{3}{4}(x-4)+1 \\
& y=\frac{3}{4} x-\frac{3}{4} \cdot 4+1 \\
& y=\frac{3}{4} x-3+1
\end{aligned}
$$

Example 4: (just touches)
The line $\overleftrightarrow{\mathrm{BD}}$ is tangent to the circle at point $\mathrm{A}(2,4)$. If the centre of the circle is $\mathrm{C}(-1,1)$, write the equation of the tangent line $\overleftrightarrow{B D}$.

Example 5:

The graph shown below is made up of linear segments A, B and C. Write an equation in slope-point form for the line that contains each segment.
(A) $m=\frac{1}{1}=1$

$$
y-2=(x-1)
$$

(B) $m=\frac{-3.5}{1}=-3.5$
$\frac{-3 \cdot 5}{1}=\frac{-35}{10}=-\frac{7}{2}$
$y-4=-\frac{7}{2}(x-3)$

Textbook Questions: page 372 -374 \#4, 5, 6(a, b), 7, 8, 9, 11, 12, 20, 22, 19, 20

