Math 1201 6.6B General Form of the Equation for a Linear Function

Converting Slope-Intercept and Slope-Point Forms to General Form

Example 1:

Ax+By+C=0

Rewrite the following in general form

(A)
$$y = 2x + 1$$

 $O = \partial \chi - \gamma +$
 $\partial \chi - \gamma + 1 = 0$
 $A B C$

(B)
$$y - 3 = 4(x - 2)$$

 $\sqrt{-3} = 4x - 8$
 $0 = 4x - \sqrt{-8} + 3$
 $0 = 4x - \sqrt{-5} + 3$
 $4x - \sqrt{-5} = 0$
A B C

Equations Involving Fractions

Perhaps the easiest way to deal with equations involving fractions is to get rid of the fraction first, by multiplying all terms present by the denominator of the fraction.

Example 2:

Rewrite the following equations in general form:

(A)
$$y = -\frac{2}{3}x + 4$$
 $\angle c0:3$
 $3:\sqrt{-3}(-\frac{2}{5}x) + 3(4)$
 $3:\sqrt{-2}(-\frac{2}{5}x) + 3(4)$
 $3:\sqrt{-2}(-$

(B)
$$y - 1 = \frac{3}{5}(x+2)$$
 L(b: 5
 $5(-5(1)) = 5 \cdot \frac{3}{5}(x+2)$
 $5(-5) = 3(x+3)$
 $5(-5) = 3(x+3)$
 $5(-5) = 3x + 6$
 $0 = 3x - 5y + 6 + 5$
 $0 = 3x - 5y + 11$
 $3x - 5y + 11 = 0$

* Terms are separated by addition or subtraction, not multiplication or division.

Example 3:

Determine the equation of the line passing through (-3, 4) and (3, 2) in general form.

$$M = \frac{\sqrt{2 - 4}}{x_{2} - x_{1}} \qquad \underbrace{\sum lep \leq -po:xt}_{(-1) = m(x - x_{1})} \qquad \underbrace{\sum lep \leq -po:xt}_{(-1) = m(x - x_{1})} \qquad \underbrace{\sum lep \leq -1 dticep t}_{(-1) = m(x - x_{1})} \qquad \underbrace{\sum lep \leq -1 dticep t}_{(-1) = m(x + 1)} \qquad \underbrace{\sum lep \geq -1 dticep t}_{(-1) =$$

Example 4: Joan and Kimberley downloaded musicvideos last month. The detailed cost is listed below.

	2		
	Musie 5015	Video	Total Cost
Joan	4	2	\$12
Kimberley	6	4	\$22

LCW:3

(A) Write an equation representing the total cost of downloads for each person.

45+2v=12 5 standard form 65+4v=22

(B) Rewrite your answers in (A) in general form.

45 + 2v - 12 = 065 + 4v - 22 = 0

Determining if a Given Point Lies on a Line Given the Equation of the Line

Example 5:

Determine whether the point (4, 9) lies on the following lines:

(A)
$$y = 2x + 1$$

 $q = a(4) + 1$
 $\zeta = a(4) +$

(B)
$$y-2=3(x+1)$$

 $9-2=3(4+i)$ BEPMAS $(4,9)$ does not lie on
 $7=3(5)$
 $7\neq i5$
 $LHS\neq RHS$

(C)
$$3x - 4y + 2 = 0$$

 $3(4) - 4(9) + 2 = 0$
 $12 - 36 + 2 = 0$
 $-22 \neq 0$
 $\zeta + 3 \neq R + S$
(4,9) does not lie on the
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$
 $1 + 2 = 2$

Example 6:

The lines nx + 12y - 2 = 0 and 3x + ny + 6 = 0 are parallel. What are the possible values of *n*?

$$\begin{array}{c} 1 & nx + 12y - 2 = 0 \\ 1 & 12y = -nx + 2 \\ \hline 12y = -nx + 2$$

Textbook Questions: page 384 - 385 #6, 8, 10, 11, 16, 18, 21, 24