Converting Slope-Intercept and Slope-Point Forms to General Form
Example 1:
Rewrite the following in general form

$$
\begin{aligned}
& \text { (A) } y=2 x+1 \\
& 0=2 x-y+1 \\
& 2 x-y+1=0 \\
& A B C C
\end{aligned}
$$

(B) $y-3=4(x-2)$

$$
\begin{aligned}
& y-3=4 x-8 \\
& 0=4 x-y-8+3 \\
& 0=4 x-y-5 \\
& 4 x-y-5=0 \\
& \text { A BC }
\end{aligned}
$$

Equations Involving Fractions
Perhaps the easiest way to deal with equations involving fractions is to get rid of the fraction first, by multiplying all terms present by the denominator of the fraction.

Example 2:
Rewrite the following equations in general form:

$$
\begin{aligned}
& \text { (A) } y=-\frac{2}{3} x+4 \quad L C D: 3 \\
& 3 \cdot y=3\left(-\frac{2}{3} x\right)+3(4) \\
& 3 y=-2 x+12 \\
& 2 x+3 y-12=0 \\
& A \quad B \quad C
\end{aligned}
$$

$$
\begin{aligned}
& \text { (B) } y-1=\frac{3}{5}(x+2) \quad L(x: 5 \\
& 5 y-5(1)=5 \cdot 3(x+2) \\
& 5 y-5=3(x+2) \\
& 5 y-5=3 x+6 \\
& 0=3 x-5 y+6+5 \\
& 0=3 x-5 y+11 \\
& 3 x-5 y+11=0
\end{aligned}
$$

* Terms ace separated by addition or subtraction, not multiplication or division.

Example 3:
Determine the equation of the line passing through $(-3,4)$ and $(3,2)$ in general form.

$$
\begin{aligned}
& M=y_{2}-y_{1} \text { Slupe-point } \\
& x_{2}-x_{1} \\
& m=\frac{2-4}{3-(-3)} \\
& m=\frac{-2}{6} \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-4=-\frac{1}{3}(x+3) L(1): 3 \\
& 3 y-3(4)=3-\frac{1}{3}(x+3) \\
& 3 y-12=-(x+3) \\
& 3 y-12=-x-3 \\
& x+3 y-9=0
\end{aligned}
$$

Applications of Linear Equations
Example 4:
Joan and Kimberley downloaded musiquideos last month. The detailed cost is listed below.

S			
	Musie Songs	Video	Total Cost
Joan	4	2	$\$ 12$
Kimberley	6	4	$\$ 22$

(A) Write an equation representing the total cost of downloads for each person.

$$
\begin{aligned}
& 4 s+2 v=12 \\
& 6 s+4 v=22
\end{aligned}
$$

(B) Rewrite your answers in (A) in general form.

$$
\begin{aligned}
& 4 s+2 v-12=0 \\
& 6 s+4 v-22=0
\end{aligned}
$$

Determining if a Given Point Lies on a Line Given the Equation of the Line
Example 5:
Determine whether the point $(4,9)$ lies on the following lines:

$$
\begin{array}{rlrl}
\text { (A) } y & =2 x+1 & x y \\
9 & =2(4)+1 & \therefore \quad(4, q) \text { does lie on the line } \\
9 & =8+1 \\
9 & =9 \\
\text { CHS } & =\text { RHS }
\end{array}
$$

(B) $y-2=3(x+1)$
$9-2=3(4+1)$ BEMAS
$(4,9)$ does not lie on

$$
7=3(5)
$$

the line $y-2=3(x-1)$
$7 \neq 15$
LIS \neq RHO
(C) $3 x-4 y+2=0$

$$
\begin{gathered}
3(4)-4(9)+2=0 \\
12-36+2=0 \\
-22 \neq 0 \\
\angle 45 \neq \text { RUS }
\end{gathered}
$$

Example 6:
The lines $n x+12 y-2=0$ and $3 x+n y+6=0$ are parallel. What are the possible values of n ?
(1)

$$
\begin{array}{rlr}
n x+12 y-2=0 & \text { (2) } & 3 x+n y+6-0 \\
12 y=-n x+2 & n y=-3 x-6 \\
\frac{12 y}{12}=-\frac{n x}{12}+\frac{2}{12} & \frac{n y}{n}=\frac{-3 x}{n}- \\
y=-\frac{n}{12} x+\frac{1}{6} & y=-\frac{3}{n} x-\frac{6}{2} \\
-\frac{n}{12} & =-\frac{3}{n} \\
n
\end{array} \quad \begin{aligned}
\sqrt{n^{2}} & =\sqrt{36} \\
n & = \pm 6
\end{aligned}
$$

Textbook Questions: page 384-385 \#6, 8, 10, 11, 16, 18, 21, 24

