To solve a system of equations algebraically means to solve without using a graph. There are two ways we will do this:

- Substitution
- Elimination

Solving by Elimination

Steps:

- Make sure the terms are written in the same order in each equation.
- Choose one of the variables to eliminate.
- Get opposite numbers, same magnitude but different sign, in front of this variable in each equation.
- Determine a LCM for each of the numbers already in front of the variable that you chose to eliminate.
- Multiply each individual equation by a certain number to get the LCM in front of the variable to be eliminated.
- Add the two equations together. This will eliminate one of the variables. Solve for the remaining variable.
- Solve for the second variable by substituting the value for the variable that you

Example 1:

Solve the following systems of equations using elimination.
(A)
$2 x+y=5$
$\begin{aligned} & y=-x+)^{3} \\ & (1) 2 x+y=5 \\ & (2) x+y=3\end{aligned}$

$$
(2,1)
$$

(8)
(3) $2 x-4 y=7$
(3x
$4 x+y=5$
(1) +4 (a)

$$
\begin{aligned}
& 2 x-4 y=7 \\
& +16 x+4 y=20 \\
& \hline \frac{18 x}{18}=\frac{27}{18} \\
& x=\frac{3}{2}
\end{aligned}
$$

3 (0) $-2(2)$
$9 x-12 y=21$
$\frac{-10 x-12 x=16}{-x=5}$
$x=-5$
$\operatorname{Sub} x$ into (1)

$$
2\left(\frac{3}{2}\right)-4 y=7
$$

$$
3-4 y=7
$$

$$
-4 y=7-3
$$

$$
\frac{-4 y}{-4}=\frac{4}{-4}
$$

$$
\begin{gathered}
y=-1 \\
\left(\left(\frac{3}{2},-1\right)\right.
\end{gathered}
$$

Sub $x \operatorname{int}(1)$

$$
\begin{gathered}
\text { Sub } x \\
3(-5)-4 y=7 \\
-15-4 y=7 \\
-4 y=7+15 \\
-4 y=22 \\
\frac{-4}{-4} \\
y=-\frac{11}{2} \\
(-5,-11 / 2)
\end{gathered}
$$

Textbook Questions: page 437 \#3, 5, 6, 7

