7.6A Solve a System of Linear Equations Algebraically

Special Cases
Solving a System of Equations that Involves Fractions
Steps:
For the equations) that involves a fraction, we will rewrite the equation without the fraction. To do this:

- Multiply each term in the equation by the denominator of the fraction. This will give us an equivalent form of the equation. The new equation will represent the same line as the original equation that is written without fractions.
- Solve the system of equations using either substitution or elimination.

Example 1:
Solve using elimination or substitution:

$$
3 x+\frac{1}{2} y=12
$$

$$
-2 x+y=8
$$

Sub x into (2):

$$
(2,12)
$$

$$
-2(2)+y=8
$$

$$
-4+y=8
$$

$$
y=8+4
$$

$y=12$

Example 2:
Solve using elimination or substitution:
$4 \cdot \frac{3}{4} x-4 \cdot y=4(-4)$
(1) $3 x-4 y=-16$
(D) $4 x+3 y=-13$

4(1)-3(2)
$12 x-16 y=-64$
$\begin{aligned}-12 x+9 y & =-39 \\ -25 y & =-25\end{aligned}$

$$
y=1
$$

$$
4 x+3 y=-13
$$

Sub y into (2):

$$
\begin{aligned}
4 x+3(1) & =-13 \quad(-4,1) \\
4 x+3 & =-13 \\
4 x & =-13-3 \\
4 x & =-16 \\
\frac{4 x}{4} & =-\frac{16}{4} \\
x & =-4
\end{aligned}
$$

Example 3:
Solve using elimination or substitution:

$$
6 \cdot \frac{1}{2} x+6 \cdot \frac{2}{3} y=6(-1)
$$

(1) $3 x+4 y=-6$

$$
\begin{aligned}
& 12 y=12 \cdot \frac{1}{4} x-12 \cdot \frac{5}{3} \\
& 12 y=3 x-20 \\
& 20=3 x-12 y
\end{aligned}
$$

(2) $3 x-12 y=20$

$$
\begin{aligned}
& \frac{1}{2} x+\frac{2}{3} y=-1 \quad \text { LCM: } 6 \\
& y=\frac{1}{4} x-\frac{5}{3} \quad \text { Lcm: } 12 \\
& \text { (1) } 3 x+4 y=-6 \\
& \text { (2) } 3 x-12 y=20 \\
& 16 y=-26 \\
& \frac{16 y}{16}=\frac{-26}{16} \\
& y=-\frac{13}{8} \\
& \left(\frac{1}{6}, \frac{-13}{8}\right) \\
& 3 x-12\left(-\frac{13}{8}\right)=20 \\
& 3 x+\frac{39}{2}=\frac{20}{1 \cdot 2} \\
& 3 x=\frac{40}{2}-\frac{39}{2} \\
& \begin{array}{l}
3 x=\frac{1}{2} \\
\frac{1}{3} \cdot 3 x=\frac{1}{2} \cdot \frac{1}{3}
\end{array} \\
& \begin{array}{c}
3 x=\frac{1}{2} \\
\frac{1}{3} \cdot 3 x=\frac{1}{2} \cdot \frac{1}{3}
\end{array} \\
& x=\frac{1}{6}
\end{aligned}
$$

Word Problems
Example 4:
Jill earns $\$ 40$ plus $\$ 10$ per hour. Tony earns $\$ 50$ plus $\$ 5$ per hour. Create a system of linear equations that represents this situation and solve algebraically using either substitution or elimination.

$$
\begin{aligned}
& \text { Jill: } y=10 x+40 \\
& \text { Tony: } y=5 x+50
\end{aligned}
$$

$$
\begin{array}{cl}
\text { "comparison Method": a type of } \\
y=y & \text { substitution } \\
10 x+40=5 x+50 & y=5(2)+50 \\
10 x-5 x=50-40 & y=10+50 \\
5 x=10 & y=60
\end{array}
$$

$$
\frac{5 x}{5}=\frac{10}{5}
$$

$$
x=2
$$

They both make $\$ 60$ when they work 2 hours.

Example 5:

Mitchell solved the linear system $2 x+3 y=6$ and $x-2 y=-6$. His solution was $(2,4)$. Verify whether Mitchell's solution is correct. Represent Mitchell's results on a graph.
(1) $2 x+3 y=6$
(2) $x-2 y=-6$ Solve (2) for x :

Sub y into (2).
$x=2 y-6$
Sub (2) into (1):
$2(2 y-6)+3 y=6$
$4 y-12+3 y=6$
$x=2\left(\frac{18}{7}\right)-6$
$x=\frac{36}{7}-\frac{6.7}{1.7}$
$x=\frac{36}{7}$
$7 y=12+6$
$7 y=18$
$\frac{7 y}{7}=\frac{18}{7}$
$y=18 / 7$
Graph:

$$
2 x+3 y=6
$$

$$
x-2 y=-6
$$

$$
3 y=-2 x+6
$$

$$
-2 y=-x-6
$$

$$
\frac{3 y}{3}=\frac{-2 x}{3}+\frac{6}{3} \quad \frac{-2 y}{-2}=\frac{-x}{-2}-\frac{6}{-2}
$$

$$
y=-\frac{2}{3} x+2 \quad y=\frac{1}{2} x+3
$$

