\qquad
2.1B Trigonometric Ratios for Special Angles

Special Right Triangles
For angles of $30^{\circ}, 45^{\circ}$ and 60°, you can determine the exact values of trigonometric ratios.
Exact Value
Answers involving fractions and/or radicals are exact as opposed to approximated decimal values. For example, $\frac{\sqrt{2}}{2}$ is an exact value and $0.7071067 \ldots$ is the approximation.

For simplicity, lets look at an right, isosceles triangle with side lengths of 1. Let's use the Pythagorean Theorem to find the hypotenuse, c.

$\sin \theta=\frac{\text { opposite side }}{\text { hypotenuse }}=\frac{8}{3}$ $\sin 45^{\circ}=\frac{1}{\sqrt{2}} \cos 45^{\circ}=\frac{1}{\sqrt{2}}$
or $\frac{\sqrt{2}}{2}$
$\cos \theta=\frac{\text { adjacent side }}{\text { hypotenuse }}=\frac{x}{r}$
$\tan \theta=\frac{\text { opposite side }}{\text { adjacent side }}=\frac{y}{x}$

$$
\tan 45^{\circ}=\frac{1}{1}=1
$$

Now lets draw the altitude of an equilateral triangle with a side length of 2.

$$
\begin{array}{ll}
\begin{array}{l}
x^{2}+y^{2}=z^{2} \\
(1)^{2}+y^{2}=(2)^{2} \\
1+y^{2}=4 \\
y^{2}=4-1 \\
y^{2}=3 \\
\sin \theta=\frac{\text { opposite side }}{\text { hypotenuse }}=\frac{y}{r} \\
\sin 30^{\circ}=\frac{1}{2}
\end{array} \quad \begin{array}{ll}
\cos \theta=\frac{\text { adjacent side }}{\text { hypotenuse }}=\frac{x}{r} & \tan \theta=\frac{\text { opposite side }}{\text { adjacent side }}=\frac{y}{x} \\
\cos 30^{\circ}=\frac{\sqrt{3}}{2} & \tan 30^{\circ}=\frac{1}{\sqrt{3}} \text { or } \\
\sin 60^{\circ}=\frac{\sqrt{3}}{3} \\
& \cos 60^{\circ}=\frac{1}{2}
\end{array} \quad \tan 60^{\circ}=\frac{\sqrt{3}}{2}=\sqrt{3}
\end{array}
$$

Example 2:
What is the EXACT length of side a in this triangle?

0

(A) $16 \sqrt{3}$
(B) 12
(C) $4 \sqrt{3}$
(D) $\frac{16}{\sqrt{3}}$
$8 \sqrt{3} \frac{\sqrt{3}}{2}=$
$a=4.3$
$a=12$

Example 3:
What is the exact length of BC?

(B) 12
(C) $4+4 \sqrt{3}$
(D) $4 \sqrt{2}+4 \sqrt{3}$

$$
\begin{array}{r}
b=4 \sqrt{3} \\
B C=4+4 \sqrt{3}
\end{array}
$$

Example 4:
$\delta^{\text {A metronome is a device that helps music students keep time. Jimmy's metronome has a }}$ $180^{\circ}-120$ pendulum arm of 10 cm long. For one particular tempo, the settings result in the arm $=60^{\circ}$ the tip of the arm move in one beat? Give your answer in exact value.

$$
\begin{gathered}
x=5 \\
2 x=2(5)=10 \mathrm{~cm}
\end{gathered}
$$

Example 5:
A 10 m boom lifts material onto a roof in need of repair. Determine the exact vertical displacement of the end of the boom when the operator lowers it from 60° to 30°.

$\sin 60^{\circ}=\frac{v_{1}}{10}$

$$
\sin 30^{\circ}=v_{2}
$$

10.

