2.2B Trigonometric Algebraic Expressions and Quadrantal Angles

Trigonometric Algebraic Expressions
There are cases where a trigonometric ration may be in the form of an algebraic expression. Some techniques from Level 1 will help in solving this type of problem.

Recall from Math 1201, when solving an algebraic expression, the idea is to isolate the variable. For example:

If we treat trigonometric functions like variables, we can solve for the function and then apply the inverse function to the trigonometric ratio to find the associated angles).

Example 1
Solve for θ, where $0^{\circ} \leq \theta \leq 360^{\circ}$.
(A)

$\cos \theta=\frac{1}{2}$
(B) $2 \sin \theta+\sqrt{3}=0$

$\theta=360^{\circ}-60^{\circ}=300^{\circ}$
$\theta_{R}=\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)=60^{\circ}$
$\theta=180^{\circ}+60^{\circ}=240^{\circ}$
$\theta=360^{\circ}-60^{\circ}=300^{\circ}$
(C)

$$
\begin{array}{ll}
-2 \cos \theta-1=0 & \theta=180^{\circ}-60^{\circ}=120^{\circ} \\
\frac{-2 \cos \theta=\frac{1}{-2}}{} \quad \theta=180^{\circ}+60^{\circ}=240^{\circ} \\
\cos \theta=-\frac{1}{2} & \\
\theta_{R}=\cos ^{-1}\left(\frac{1}{2}\right)=60^{\circ} &
\end{array}
$$

(D) $\sqrt{2} \cos \theta+2=1$

$$
\begin{aligned}
\sqrt{2} \cos \theta & =1-2 \\
\frac{\sqrt{2} \cos \theta}{\sqrt{2}} & =\frac{-1}{\sqrt{2}} \\
\cos \theta & =-\frac{1}{\sqrt{2}}
\end{aligned}
$$

* ${ }^{(E)}$

$$
\begin{aligned}
& 3 \cos \theta-2 \sqrt{3}=4 \sqrt{3} \\
& 3 \cos \theta=4 \sqrt{3}+2 \sqrt{3} \quad \theta=\text { undefined. } \\
& \frac{3 \cos \theta}{3}=\frac{6 \sqrt{3}}{3} \\
& \cos \theta=2 \sqrt{3}
\end{aligned}
$$

$$
\theta_{R}=\cos (2 \sqrt{3})
$$

Example 2
Solve for θ, where $0^{\circ} \leq \theta \leq 360^{\circ}$.
(A)

$$
\begin{aligned}
& -5 \cos \theta-3=0 \\
& -5 \cos \theta=\frac{3}{-5} \\
& \cos \theta=-\frac{3}{5}
\end{aligned}
$$

$$
\theta_{R}=\cos ^{-1}\left(\frac{3}{5}\right)
$$

$$
\theta_{R}=53^{\circ}
$$

$\theta+1+t$
$\theta-127-$
1270

$$
\begin{aligned}
& \theta=180^{\circ}-53^{\circ}=127^{\circ} \\
& \theta=180^{\circ}+53^{\circ}=233^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \sin \theta=-\frac{10}{11} \\
& \theta=\sin ^{-1}\left(\frac{-10}{11}\right) \\
& \text { undefined }
\end{aligned}
$$

(C) $-3 \cos \theta-1=0$
$\frac{-3 \cos \theta}{-3}=\frac{1}{-3}$
$\cos \theta=-\frac{1}{3}$

$$
\begin{aligned}
& \theta_{R}=\cos ^{-1}\left(\frac{1}{3}\right)=71^{\circ} \\
& \theta=180^{\circ}-71^{\circ}=100^{\circ}++++ \\
& \theta=180^{\circ}+71^{\circ}=-250^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (D) } \quad 7 \cos \theta+2=-1 \\
& 7 \cos \theta=-1-2 \\
& \frac{7 \cos \theta}{7}=\frac{-3}{7}
\end{aligned}
$$

Quadrantal Angles

$$
\begin{gathered}
\cos \theta=-\frac{3}{7} \\
\theta_{R}=\cos ^{-1}\left(\frac{3}{7}\right)=65^{\circ} \\
\theta=180^{\circ}-65^{\circ}=115^{\circ} \\
\theta=180^{\circ}+65^{\circ}=245^{\circ}
\end{gathered}
$$

Trigonometric ratios for angles whose measurements are $0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}$ or 360° are also special cases and will now be explored. These five angles are called the Quadrantal Angles.
Answer the following questions for these five angles.

Where is the terminal arm?
Either on the x-axis or y-axis.
Does this angle have a corresponding reference angle?
No. Sure distance to both axis.

$$
\text { Cone coil hear a triangle with } 1 \text { arm. }
$$

Use a calculator to verify the values of sine, cosine and tangent at all five quadrantal angles.

Angle	$\cos \theta$	$\sin \theta$	$\tan \theta$
0°	1	0	0
90°	0	1	undefined
180°	-1	0	Δ
270°	0	-1	undefined
360°	1	0	0

