The Sine Law is a relationship between the sides and angles in any triangle. Let's take a look how the formula is derived:
Let h be the altitude.

$$
\begin{aligned}
& \therefore A D \perp B C \\
& \triangle A B D \quad \triangle A C D \\
& c \cdot \sin B=\frac{h}{l} \cdot 4 \cdot \sin C=\frac{h}{b} \cdot \frac{b}{b} \\
& h=c \cdot \sin B \quad h=b \sin C \quad \text { Same moth well } \\
& n=h \quad \text { Show how a relates } \\
& \frac{1}{d} \cdot t \sin B=b \sin C \cdot \frac{1}{c} \quad \text { show how } \\
& \frac{1}{b} \sin B=\frac{b \sin C}{c} \cdot \frac{1}{b} \\
& \frac{\sin B}{b}=\frac{{ }^{c} \cdot \operatorname{con} C}{c}
\end{aligned}
$$

The Sine Law
Let $\triangle \mathrm{ABC}$ be any triangle, where a, b and c represent the measures of the sides opposite $\angle A, \angle B$ and $\angle C$, respectively. Then:

or

Example 1
What is the measure of side x ?

Example 2
What is the measure of side x ?

$$
\begin{aligned}
& \frac{c}{\sin C}=\frac{a}{\sin A} A>\underbrace{c} \\
& \frac{x}{\sin 112^{\circ}}=\frac{6.8}{\sin 27^{\circ}} \\
& x=\frac{6.8 \sin 112^{\circ}}{\sin 27^{\circ}} \\
& x=13.99_{\text {un. }}^{\circ}
\end{aligned}
$$

Example 3
What is the measure of side x ?

$$
\begin{aligned}
& \frac{d}{\sin D}=\frac{f}{\sin F} \\
& \frac{x}{\sin 56^{\circ}}=\frac{34}{\sin 81^{\circ}} \\
& x=\frac{34 \sin 56^{\circ}}{\sin 10}
\end{aligned}
$$

$$
x=29 \text { units }
$$

Example 4
Consider $\triangle \mathrm{ABC}$. Determine the length of side a, given $b=12, \angle A=57^{\circ}$ and $\angle B=43^{\circ}$.

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B} \\
& \frac{a}{\sin 57}=\frac{12}{\sin 43^{\circ}} \\
& a=\frac{12 \sin 57^{\circ}}{\sin 43^{\circ}}=15 \text { units }
\end{aligned}
$$

Example 5
Determine the measure of θ.

$$
\begin{aligned}
& \frac{\sin A}{a}=\frac{\sin c}{c} \\
& 36 \cdot \frac{\sin \theta}{36}=\frac{\sin 43^{\circ}}{28} \cdot 36 \\
& \sin \theta=\frac{\sin \left(43^{\circ}\right) \cdot 36}{28} \\
& \begin{aligned}
\sin \theta & =0.8769 \\
\theta & =\sin ^{-1}(0.8764) \\
& =611^{\circ}
\end{aligned}
\end{aligned}
$$

Example 6
Determine the measure of θ

$$
\begin{aligned}
& \frac{\sin B}{b}=\frac{\sin C}{c} \\
& \frac{\sin \theta}{60}=\frac{\sin 35^{\circ}}{36} \\
& \sin \theta=\frac{60 \sin 35^{\circ}}{36} \\
& \theta=\sin ^{-1}(0.9560)=73^{\circ}
\end{aligned}
$$

Example 7
Determine the measure of θ.

$$
\begin{aligned}
& \frac{\sin A}{a}=\frac{\sin C}{c} \\
& \frac{\sin \theta}{32}=\frac{\sin 114^{\circ}}{51} \\
& \sin \theta=\frac{32 \sin 114^{\circ}}{51} \\
& \theta=\sin ^{-1}(0.5732)=35^{\circ}
\end{aligned}
$$

A

Example 8
Consider \triangle DEF. Determine the measure of $\angle \mathrm{D}$ given $\angle \mathrm{E}=43^{\circ}, d=65 \mathrm{~cm}$ and $e=52 \mathrm{~cm}$.

Example 9
Pudluk and his family own a cabin up at Bonne Bay pond. He and his friend wish to determine the distance from Pudluk's cabin to a communications tower they regularly ride to on snowmobile. Pudluk and his friend know the distance between their cabins is 1.8 km . Using a transit, they estimate the measure of the angles between their cabins and the communication tower as shown in the diagram below. Determine the distance from Pudluk's cabin to the tower to the nearest tenth of a kilometer.

Textbook Questions: page: 108-112; \# 1, 2, 3, 4, 5, 10, 12, 13, 24

