2.4 The Cosine Law

The cosine law describes the relationship between the cosine of an angle and the lengths of the three sides of any angle. Lets take a look at how this formula was developed:

$$
\begin{aligned}
& \triangle B C D \\
& a \cdot \cos C=\frac{x}{a C} \\
& x=a \cos C a^{2}=x^{2}+h^{2} \\
& \triangle A B D \\
& C^{2}=h^{2}+(b-x)^{2}=(b-x)(b-x) \\
& C^{2}=h^{2}+b^{2}-2 b x+x^{2}=b^{2}-b x-x b+x^{2} \\
& \left.C^{2}=h^{2}+x^{2}+b^{2}-2 b x=b-x\right)-x(b-x) \\
& C^{2}=a^{2}+b^{2}-2 b a \cos C=b^{2}-2 b x+x^{2} \\
& C^{2}=a^{2}+b^{2}-2 a b \cos C
\end{aligned}
$$

The Cosine Law
For any triangle, $\triangle \mathrm{ABC}$, where a, b, and c are the lengths of the sides opposite $\angle \mathrm{A}, \angle \mathrm{B}$ and $\angle C$, respectively. Then

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cdot \cos \mathrm{~A}<\text { provided } \\
& b^{2}=a^{2}+c^{2}-2 a c \cdot \cos \mathrm{~B} \\
& c^{2}=a^{2}+b^{2}-2 a b \cdot \cos \mathrm{C}
\end{aligned}
$$

Example 1
Determine the measure of x.

- Side-argle-side
$a^{2}=b^{2}+c^{2}-2 b c \cos A$

$$
x^{2}=(8)^{2}+(12)^{2}-2(8)(12) \cos \left(100^{\circ}\right)^{12} 5
$$

$\sqrt{x^{2}}=\sqrt{241.3405}$

$$
x=16 \text { units }
$$

Example 2
Determine the measure of x.

$$
\begin{aligned}
& b^{2}=a^{2}+c^{2}-2 a c \cdot \cos B \\
& x^{2}=(34)^{2}+(23)^{2}-2(34)(23) \cos \left(39^{\circ}\right) \\
& x^{2}=469.5437 \\
& \sqrt{x^{2}}=\sqrt{469.5437} \\
& x=22 \text { units }
\end{aligned}
$$

Example 3
Determine the measure of x.

$$
a^{2}=b^{2}+c^{2}-2 b \cos A
$$

$$
x^{2}=(54)^{2}+(51)^{2}-2(54)(31) \cos 66^{\circ}
$$

$$
x^{2}=2515.2457
$$

$$
\sqrt{x^{2}}=\sqrt{2515.2457}
$$

$$
x=50 \text { units }
$$

Example 4
A surveyor needs to find the length of a marshy area in Gros Morne National Park. The surveyor sets up her transit at a point A. She measures the distance to one end of the the marsh as 468.2 m , the distance to the opposite end of the swamp as 692.6 m , and the angle of sight between the two as 78.6°. Determine the length of the marshy area, to the nearest tenth of a metre.

$a^{2}=570715.2054$
$\sqrt{a^{2}}=\sqrt{570715.2054}$
$a=755.5 \mathrm{~m}$

We can also use the Cosine Law to solve for missing angles. We can use the formula as is, but it's better to rearrange the formula and isolate the angle.
$a^{2}=b^{2}+c^{2}-2 b c \cdot \cos A$ Solate $\cos A$

$$
\begin{aligned}
& b^{2}+c^{2}-2 b c \cdot \cos A=a^{2} \\
& +2 b x \cdot \cos A=\frac{a^{2}-b^{2}-c^{2}}{-2 b c} \\
& \cos A=\left(\frac{a^{2}-b^{2}-c^{2}}{-2 b c}(-1)\right. \\
& \cos A=\frac{-1 \cdot\left(a^{2}-b^{2}-c^{2}\right)}{2 b c} \\
& \cos A=\frac{-a^{2}+b^{2}+c^{2}}{2 b c} \\
& \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
& \cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c} \\
& \cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}
\end{aligned}
$$

Determine the value of θ to the nearest degree.
Side-side- side

$$
\begin{aligned}
& \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
& \cos \theta=\frac{(18)^{2}+(12)^{2}-(16)^{2}}{2(18)(12)} \\
& \cos \theta=\frac{212}{432}
\end{aligned}
$$

$$
\theta=61^{\circ}
$$

Example 6
Determine the value of θ to the nearest degree.

$$
\begin{aligned}
\cos A & =\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
\cos \theta & =\frac{(26)^{2}+(38)^{2}-(30)^{2}}{2(26)(38)} \\
\cos \theta & =\frac{1220}{1976} \\
\cos \theta & =0.6174 \\
& =\cos ^{-1}(0.6174)
\end{aligned} \quad \rightarrow
$$

Example 7
The Lions' Gate Bridge has been a Vancouver landmark since it opened in 1938. It is the longest suspension bridge in Western Canada. The bridge is strengthened by triangular braces. Suppose one brace has lengths $14 \mathrm{~m}, 19 \mathrm{~m}$, and 12.2 m . Determine the measure of the angle opposite the 14 m side, to the nearest degree.

$$
\begin{aligned}
& \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
& \cos \theta=\frac{(12.2)^{2}+(19)^{2}-(14)^{2}}{2(12.2)(19)} c \frac{1}{5.2} A \\
& \cos \theta=0.6770 \\
& \theta=\cos ^{1}(0.6770) \\
& \theta=470 \\
& \text { The angle opposite the } 14 \mathrm{~m} \text { side is } 47^{\circ} .
\end{aligned}
$$

Textbook Questions: page: 119-124; \# 1, 2, 4, 6, 8, 10, 12, 19, 23, 30

