3.1 Investigating Quadratic Functions in Vertex Form

Degree of a Function - refers to the highest exponent on the variable in an expression or equation.

In Math 1201, you learned about linear functions. These have a degree of 1. When the exponent on the variable is 1, we don't include it in the equation.

Examples of Linear functions:

y = 2x + 5 y = -7x + 2 10x - 3y = 12

Notice that in each of these equations, the exponent on the variable *x* is 1.

Quadratic Functions

These have a degree of 2. That is, highest power of any x is 2.

Examples of Quadratic functions:

$y = 2x^2 + 5x - 4$	$y = -3x^2 - 7x + 1$	y = (x-3)(x+4)		
y = x(x+4)	$y = -3(x+4)^2 + 2$	$y = (3x - 2)^2$		

Example 1:

Describe the reasoning used to decide whether each statement is true or false.

Polynomial Function	Classification	True or False	Explain/Justify		
y = 5(x + 3)	Linear	Ţ	highost	Powe,	- 1
$y = 5(x^2 + 3)$	Quadratic	T	10	Vi.	2
$y = 5^2(x+3)$	Quadratic	F	10	Ν _Γ	I
$y = 5\mathbf{x}(x+3)$	Linear	F	١(ι.	2
y = (5x + 1)(x + 3)	Quadratic	T	N.	U.	2
$y = 5(x + 3)^2 + 2$	Quadratic	Т	N	NS.	S

The Parabola

Parabola: the shape of the graph of any quadratic relation. It is a u-shaped graph, that can open upward or downward.

Watch "Projectile Motion - Science of NFL Football"

https://www.youtube.com/watch?v=HB4ws7RoA3M

What are some other natural events that involve parabolas?

Bullet fired, archway, etc.

A **quadratic function** is a function, f, whose value f(x) at x is given by a polynomial of degree two. $f(x) = x^2$, the simplest form of a quadratic function

A **parabola** is the symmetrical curve of the graph of a quadratic function

The **vertex** of a parabola is the lowest point of the graph if the graph opens upward, or the highest point of the graph if the graph opens downward.

The **minimum value** of a function is the least value in the range of a function.

The **maximum value** of a function is the greatest value in the range of a function.

The **axis of symmetry** is a line through the vertex that divides the graph of a quadratic function into two congruent halves. It is defined by the *x*-coordinate of the vertex.

Vertex Form

Quadratics written in vertex form:

$$f(x) = a(x-p)^2 + q$$

are useful when graphing. The vertex form tells you the location of the vertex, (p, q), the shape of the parobala and the direction of opening.

Summary:

One way to remember how to determine direction of opening is shown here.

The Effect of Parameter p

translates the parabola horizontally and the parabola horizontally and the equation.
pointle equation.
perabola translates p=3
pe

Example 2:

Complete the webbing to describe the effects of the parameters *a*, *p* and *q* on the quadratic function $f(x) = a(x-p)^2 + q$

Example 3:

Example 3: Determine the following characteristics for $y = 2(x + 1)^2 - 3$.

- the domain and range
- the direction of the opening •
- the equation of the axis of symmetry •

Then, sketch each graph.

Example 5:

Try this on your own. Determine a quadratic function in vertex form for the graph.

Example 6:

A stream of water from a fountain forms a parabolic shape. Given the spout on the fountain is 5 cm high and the maximum height reached by the water is 14 cm at a distance of 6 cm from the spout, what is the height of the water when it is 8 cm from the spout?

 $Y = a (X - p)^{2}$ $5 = a (0 - b)^{2}$ 5 - 14 = 36a-1(8-6 = 364 .(4)+ (+14- $\alpha = -\frac{1}{4}$ = 13 cm high

Example 7:

A cannonball, fired from ground level, reaches a maximum height of 50m when it is fired at a ground-level target which it hits 100m away. How high is the cannonball above the ground when it is 20m from the target?

The Number of Zeros

What will affect the number of *x*-intercepts?

- The direction of the opening of the parabola
- The location of the vertex

To determine how many zeros a quadratic function has, make a rough sketch of the graph using the vertex and direction of opening.

Example 8:

Determine the number of *x*-intercepts for each quadratic function.

What will affect the number of *x*-intercepts?

- The direction of the opening of the parabola
- The location of the vertex

(A) $f(x) = 0.8x^2 - 3$ (B) $f(x) = 2(x + 1)^2$ (C) $f(x) = -3(x + 2)^2 - 1$ f(x) f(x)f(x)

Table of Values and Vertex Form

If given a parabola in the form of a table of values, there are observations that can be made that can help determine the equation of the parabola in vertex form.

Example 9:

Graph the table of values below and answer the following questions:

(C) What is the connection between the maximum or minimum point on the graph and the vertex?

The g coordinate is the minimum.

(D) How can the vertex be obtained directly from the vertex form of the quadratic function?

It's the maximum or minimum point.

Example 10:

Determine the vertex form of the quadratic function from the given table of values.

Example 11:

Determine the vertex form of the quadratic function given the following information.

Equation of the axis of symmetry is x = 2, the minimum value of y is -5, and the (B) y -intercept is 3.

Textbook Questions: page: 157-162; # 3, 7, 8, 10, 12, 15, 17, 20, 21, 22