### 4.1 Graphical Solutions of Quadratic Equations

A quadratic equation is a second-degree equation with standard form $a x^{2}+b x+c=0$, where $a \neq 0$.

The roots of a quadratic equation are the solutions to that equation.
The zeros of a function are the values of $x$ for which $f(x)=0$.
It is important for students to distinguish between the terms roots, zeros and $x$-intercepts, and to use the correct term in a given situation. The $x$-intercepts of the graph or the zeros of the quadratic function correspond to the roots of the quadratic equation.

You would:

- find the roots of the equation $x^{2}-7 x+12=0$
- find the zeros of $f(x)=x^{2}-7 x+12$
- determine the $x$-intercepts of $y=x^{2}-7 x+12$

In each case they are solving $x^{2}-7 x+12=0$ and arriving at the solution $x=3$ or $x=4$.

## Example 1:

What are the zeros of the quadratic function $f(x)=2 x^{2}+2 x-12$ ?

$$
\begin{gathered}
(-3,0)(2,0) \\
X=-3, x=2
\end{gathered}
$$



## Example 2:

What are the roots of the equation $-x^{2}+8 x-16=0$ ?
We can either create our own graph by creating a table of values, or we can use our calculators to find the solution.

| $x$ | $f(x)$ |
| :---: | :---: |
| 0 | -16 |
| 1 | -9 |
| 2 | -4 |
| 3 | -1 |
| 4 | 0 |
| 5 | -1 |
| 6 | -4 |
| 7 | -9 |
| 8 | -16 |



We can see that the vertex is $(4,0)$.
So, the root of the equation is $x=4$. Notice there is only a single root because the vertex is the intersection point.

Another way of conceptualizing this topic is to think of a quadratic equation equal to 0 as two separate functions. One a quadratic and the other a horizontal line $y=0$.

For example:

$$
2 x^{2}+3 x-7=0
$$

Can be thought of as two functions, namely:




The solution to these two equations is where they intersect, which is always the line $y=0$ or also called the $x$-axis.

## Graphical Solutions Using Technology

We can also use technology such as graphing calculators or computer software to solve quadratic equations.

## Example 3:

Solve $2 x^{2}+x=-2$ by graphing.
First, rearrange the equation so that it is in the form $a x^{2}+b x+c=0$.

$$
2 x^{2}+x+2=0
$$

Replacing 0 with $y$ and using a Desmos Graphing we get:

What does this mean?

- no solution (s)
- No real roots
- imaginary roots

Recall from Chapter 3:



## Example 4:

Two numbers have a sum of of 7 and a product of 12 .
(A) What single variable equation in the form of $a x^{2}+b x+c=0$ can be used to represent the product of the two numbers?

(B) Determine the numbers by graphing the corresponding quadratic function.


$$
\begin{array}{r}
\operatorname{rot} s:(3,0),(4,0) \\
x=3, x=4
\end{array}
$$

Textbook Questions: page 215-217, \# 1, 2, 3, 5, 6, 7, 8, 10, 13

