\qquad equation.

$$
\begin{aligned}
& a\left(x^{2}+\frac{b}{a} x\right)+c=0^{\left(a x^{2}+b x\right)+c=0} \\
& a\left(x^{2}+\frac{b}{a} x+\frac{b^{2}}{4 a^{2}}\right)+c-a \cdot \frac{b^{2}}{4 a^{2}}=0 \\
& a\left(x+\frac{b}{2 a}\right)^{2}+c-\frac{b^{2}}{4 a}=0 \\
& a\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}}{4 a}-\frac{c}{1} \cdot 4 a \\
& a\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}}{4 a}-\frac{4 a c}{4 a} \\
& \frac{1}{a} \cdot a\left(x+\frac{h}{2 a}\right)^{2}=\frac{b^{2}-4 a c}{4 a} \cdot \frac{1}{a} \\
& \sqrt{\left(x+\frac{b}{2 a}\right)^{2}}=\sqrt{\frac{b^{2}-4 a c}{4 a^{2}}} \\
& x+\frac{b}{2 a}=\frac{\sqrt{b^{2}-4 a c}}{2 a} \\
& x=-\frac{b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}
\end{aligned} \quad x=-\frac{b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

The Quadratic Formula is defined as:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Example 1: $a \quad b \quad c$
Find the roots of $y=1 x^{2}+10 x+21$ using the quadratic formula.

$$
x^{2}+10 x+21=0
$$

$$
x=-\frac{10 \pm \sqrt{10^{2}-4(1)(21)}}{2(1)} \quad \begin{aligned}
& (x+3)(x+7)=0 \\
& x=-3, x=-7
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{-10 \pm \sqrt{100-84}}{2} \\
& x=\frac{-10 \pm \sqrt{16}}{2} \\
& x=-\frac{10 \pm 4}{2} \\
& x=-\frac{10+4}{2}, x=\frac{-10-4}{2} \\
& x=-\frac{6}{2}, x=-\frac{14}{2} \\
& x=-3
\end{aligned}
$$

Example 2
Solve using the quadratic formula, express your answer as an exact value.

$$
\begin{aligned}
& 5 x^{2}-7 x-1=0 \\
& x=\frac{-(-7) \pm \sqrt{(-7)^{2}-4(5)(-1)}}{2(5)} \\
& x=\frac{7 \pm \sqrt{49+20}}{10} \\
& x=\frac{7 \pm \sqrt{69}}{10} \\
& x=\frac{7+\sqrt{69}}{10}, x=\frac{7-\sqrt{69}}{10}
\end{aligned}
$$

Example 3:
Solve using the quadratic formula, express your answer to the nearest hundredth.

$$
\begin{aligned}
& 3 x^{2}+5 x-2=0 \quad x(3 x+5)=2 \\
& x=\frac{-5 \pm \sqrt{5^{2}-4(3)(-2)}}{2(3)} \quad \rightarrow x=\frac{-5+7}{6}, x=\frac{-5-7}{6} \\
& x=\frac{-5 \pm \sqrt{25+24}}{6} \\
& x=\frac{-5 \pm \sqrt{49}}{6} \\
& x=\frac{2}{6}, x=-\frac{12}{6} \\
& x=\frac{1}{3} \quad x=-2 \\
& x=\frac{-5 \pm 7}{6}
\end{aligned}
$$

Example 4:
Solve using the quadratic formula, express your answer to the nearest hundredth.

$$
\begin{aligned}
& 3 x^{2}-x-4=0 \\
& x=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(3)(-4)}}{2(3)} \\
& x=\frac{1 \pm \sqrt{1+48}}{6}, x=\frac{1 \pm 7}{6} \\
& \begin{array}{ll}
x=\frac{1 \pm \sqrt{49}}{6}, & x=\frac{1+7}{6}, x=\frac{1-7}{6} \\
x & =\frac{8}{6}, \\
x=1.33, & x=-1.00
\end{array}
\end{aligned}
$$

Example 5
Mary, David, and Ron are students in a group. They are given the equation $A=x^{2}+3 x-110$ where A represents the area of a field and x represents the width in metres. The students were asked to find the width if the area was $100 \mathrm{~m}^{2}$. Each student decided to solve the equation using their own preferred method. Here are their solutions:

Mary
$x^{2}+3 x-110=100$
$x^{2}+3 x-210=0$
$x=\frac{-3=\sqrt{9-(4)(1)(-210)}}{2}$
$x=\frac{3 \pm \sqrt{(-8 \overline{3} \overline{1}}}{2} \pi 84 q^{\text {width is } 3 \mathrm{~m}}$
$\mathrm{x}=\frac{3 \pm 28.827}{2}$
$x=15.9$ or $x=-12.9$
width is 15.9 m
$\mathrm{x}=-5$ or $\mathrm{x}=3$

David
$x^{2}+3 x-110=100$
$x^{2}+3-10=0-2$
$(x+5)(x-3)=0$
Ron

210

$$
\mathrm{x}=\frac{-3 \pm \sqrt{9-(4)(1)(-110)}}{2}
$$

$$
\mathrm{x}=\frac{-3 \pm \sqrt{9+440}}{2}
$$

$$
x=\frac{-3 \pm \sqrt{449}}{2}
$$

$$
x=\frac{-3 \pm 21.2}{2}
$$

$$
x=9.1 \text { or } x=-12.1
$$

width is 9.1 m

Identify and explain the errors in the students' work, then write the correct solution.

Example 6
jonas wants to frame an oil original painted on canvas measuring 50 cm by 60 cm . Before framing, he places the painting on a rectangular mat so that a uniform strip of the mat How wide is the strip of exposed mat showing on all sides of the painting to the painting.

$$
\left[\begin{array}{l}
x=\frac{-55+77.6}{2} \\
x=11.3 \\
\text { or } \\
x=\frac{-55-77.6}{2} \\
x=-66.3
\end{array}\right.
$$

$$
\begin{aligned}
& \text { tenth of a centimetre. } \\
& l \cdot \omega=A \\
& A_{p}=50 \times 60 \\
& =3000 \\
& l \cdot w=6000 \\
& (2 x+50)(2 x+60)=6000 \\
& 4 x^{2}+120 x+100 x+3000-6000=0 \\
& \frac{4 x^{2}+220 x-3000}{2}=\frac{0}{4} \\
& \begin{array}{l}
4 \\
x^{2}+55 x-750=0
\end{array} \\
& x=\frac{-55 \pm \sqrt{55^{2}-4(1)(-750)}}{2(1)} \\
& x=\frac{-55 \pm \sqrt{6025}}{2} \\
& x=\frac{-55 \pm 77.6}{2} \text { xis } 1.3 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}+(x+1)^{2}=265 \\
& x^{2}+x^{2}+2 x+1-265=0 \\
& \frac{2 x^{2}+2 x-264}{2}=\frac{0}{2} \\
& x^{2}+x-132=0 \\
& x=\frac{-1 \pm \sqrt{1^{2}-4(1)(-132)}}{2(1)} \\
& x=\frac{-1 \pm \sqrt{529}}{2}
\end{aligned} x
$$

$$
\sqrt{x}=-\frac{1 \pm 23}{2}
$$

$$
\begin{aligned}
& x=-\frac{1+23}{2}, x=\frac{-1-23}{2} \\
& x=\frac{2 \partial}{2}, x=\frac{-24}{2}
\end{aligned}
$$

$$
x=11, x=-12
$$

$$
x+1=11+1=12
$$

Imaginary Roots
Originally coined in the 17th century as a derogatory term and regarded as fictitious or useless, the concept gained wide acceptance following the work of Leonhard Euler and Carl Friedrich Gauss.

For Math 2200, we are only concerned with imaginary numbers as they are used to represent the roots of quadratics that do not cross the x-intercept. When using the quadratic formula to solve quadratic equations, we simply incorporate the fact that $i=\sqrt{-1}$ as we did in section 4.4A.

Example 8:
Solve using the quadratic formula:
(A) $\quad \begin{aligned} & \text { C } \\ & 2 x^{2}+3 x+5=0 \\ & \text { b }\end{aligned}$

$$
x=-3 \pm \sqrt{3^{2}-4(7)(5)}
$$

$$
x=\frac{-2 \pm \sqrt{2^{2}-4(1)(5)}}{2(1)}
$$

$$
x=\frac{3 \pm \sqrt{9-40}}{2(2)}
$$

$$
x=-2 \pm \sqrt{4-20}
$$

Discriminant
The discriminant is the radicand part of the quadratic equation:

$$
\mathrm{D}=b^{2}-4 a c
$$

It is a useful tool if only the nature of the roots are required as opposed to the actual root.

- If $b^{2}-4 a c>0$ then there are two real roots, as shown by graph A.
- If $b^{2}-4 a c=0$ then there is one real root, as shown by graph B.
- If $b^{2}-4 a c<0$ then there are no real roots, as shown by graph C.

Example 8
Use the discriminant to determine the nature of the roots for $3 x^{2}-5 x=-9$.
$D=b^{2}-4 a c$

$$
a^{3 x^{2}-5 x+9}=0
$$

$$
\begin{aligned}
(I & =(-5)^{2}-4(3)(9) & & -83<0 \\
& =25-108 & & \therefore \text { No real roots } \\
& =-83 & & 2 \text { Imaginary roots }
\end{aligned}
$$

Example 9

How many roots does the following equation have?

$$
\begin{array}{rlr}
D & =b^{2} \quad 0.25 x^{2}-3 x+9=0 \\
& =(-3)^{2}-4(0.25)(9) \\
& =9-9 & . \quad 1 \text { feal root }
\end{array}
$$

Example 10

When Chantal was asked to describe the roots of the equation $14 x^{2}-5 x=-5$, she rearranged the equation so that it would equal zero, then used the quadratic formula to find the roots. Her workings are shown below. Edward said that she didn't have to do all that and he then showed the class his work. Are they both correct. Identify your preferred.

$$
\begin{array}{ll}
\text { Chantal } & \text { Edward } \\
x=\frac{5 \pm \sqrt{25-280}}{28} & b^{2}-4 a c \\
x=\frac{5 \pm \sqrt{-255}}{28} & =25-280 \\
x=\frac{5 \pm \sqrt{-1} \sqrt{255}}{28} & =-255 \\
x=\frac{5 \pm i \sqrt{255}}{28} & \text { no real roo } \\
\text { imaginary roots } &
\end{array}
$$

Bothare correct. Edward's solution is more efficient.

