5.2 Multiplying and Dividing Radical Expressions

Multiplying Radicals
When multiplying radicals, multiply the coefficients and multiply the radicands. You can only multiply radicals if they have the same index.

In general, $(m \sqrt[k]{a})(n \sqrt[k]{b})=m n \sqrt[k]{a b}$ where k is a natural number, and m, n, a, and b are real numbers. If k is even, then $a \geq 0$ and $b \geq 0$.

Example 1:
(A)

$$
\begin{aligned}
& (-3 \sqrt{2 x})(4 \sqrt{6}), x \geq 0 \\
= & (-3 \cdot 4) \sqrt{2 x \cdot 6} \\
= & -12 \sqrt{12 x} \\
= & -12 \sqrt{4} \sqrt{3 x} \\
= & -12 \cdot 2 \sqrt{3 x} \\
= & -24 \sqrt{3 x}
\end{aligned}
$$

(B)

$$
\begin{aligned}
& \quad \sqrt{\sqrt{3}(\sqrt[5]{5}-6 \sqrt{3})} \sqrt{x}=\sqrt{x^{2}}=x \\
= & (7 \sqrt{3})(5 \sqrt{5})-(7 \sqrt{3})(6 \sqrt{3}) \\
= & 35 \sqrt{15}-42 \sqrt{9} \\
= & 35 \sqrt{15}-42 \cdot 3 \\
= & 35 \sqrt{15}-126
\end{aligned}
$$

(C)

$$
\begin{aligned}
& =72 \sqrt{10}+48 \sqrt{20}-5)(\sqrt{5}+6 \sqrt{10}) \\
& =72 \sqrt{10}+48 \sqrt{4} \sqrt{5}-45 \sqrt{5}-30 \sqrt{10} \\
& =72 \sqrt{10}+96 \sqrt{5}-45 \sqrt{5}-30 \sqrt{10} \\
& =42 \sqrt{10}+51 \sqrt{5}
\end{aligned}
$$

(D)

$$
\begin{aligned}
& 9 \sqrt[9]{2 w}(\sqrt[3]{4 w}+7 \sqrt[3]{28}), w \geq 0 \\
= & 9 \sqrt[3]{8 w^{2}}+63 \sqrt[3]{56 w} \\
= & 9 \sqrt[3]{8 \sqrt[3]{w^{2}}+63 \sqrt[3]{8} \sqrt[3]{7 w}}=9 \cdot 2 \sqrt[3]{w^{2}}+63 \cdot 2 \sqrt[3]{7 w} \\
= & 18 \sqrt[3]{w^{2}}+126 \sqrt[3]{7 w}
\end{aligned}
$$

Dividing Radicals

When dividing radicals, divide the coefficients and then divide the radicands. You can only divide radicals that have the same index.

In general, $\frac{m \sqrt[k]{a}}{n \sqrt[k]{b}}=\frac{m}{n} \cdot \sqrt[k]{\frac{a}{b^{\prime}}}, k$ is a natural number, and m, n, a, and b are real numbers. $n \neq 0$ and $b \neq 0$. If k is even, then $a \geq 0$ and $b>0$.

Example 2:

$$
=2 \sqrt[{\frac{4 \sqrt[3]{6}}{2 \sqrt[3]{3}}}]{2}
$$

Rationalizing the Denominator

It's considered bad form to leave a radical in the denominator of a fraction. There are two methods we use to remedy this, depending on the type of expression that is in the denominator.
be ied

A monomial denominator can simply multiphy by 1 in the form of that denominator over itself:

Example 3:

$$
\begin{aligned}
& \frac{5}{2 \sqrt{3}} \sqrt{3} \\
= & \frac{5 \sqrt{3}}{2 \cdot 3} \\
= & \frac{5 \sqrt{3}}{6}
\end{aligned}
$$

A binomial denominator requires a conjugate to remove any radicals. Conjugates are binomial factors whose product is a difference of squares. Since squaring a square root elimates a the radical and the middle terms cancel when expanding a difference of squares, we can use this property to remove al radical in a denominator.

Example 4:

Example 5:
(A)

$$
\begin{aligned}
& \frac{\sqrt{24 x^{2}}}{\sqrt{3 x}} \\
&=\sqrt{\frac{24 x^{2}}{3 x}} \\
&=\sqrt{8 x} \\
&= \sqrt{4} \sqrt{2 x} \\
&= 2 \sqrt{2 x}
\end{aligned}
$$

(B)

$$
\left.\begin{array}{l}
=\frac{4 \sqrt{5 n}}{3 \sqrt{2}} \sqrt{2} \sqrt{2} \\
=\frac{4 \sqrt{10 n}}{3 \cdot 2} \\
=\frac{2 \sqrt{5 n}, n \geq 0}{3} \\
3^{2}
\end{array}\right]^{3}=\frac{2 \sqrt{10 n}}{3}
$$

(C)

$$
\begin{aligned}
& \frac{4 \sqrt{11}}{y \sqrt[3]{6}} \sqrt[3]{6} \sqrt[3]{\sqrt[{4 \sqrt[4]{11}}]{\sqrt[3]{6}}, y \neq 0}=\sqrt[3]{6} \cdot \sqrt[3]{6} \\
= & \frac{4 \sqrt[3]{36}}{y \cdot 6} \\
= & \frac{2 \sqrt[3]{36}}{3 y}
\end{aligned}
$$

(D)

$$
\begin{aligned}
& \frac{11}{\sqrt{5} 7} \cdot(\sqrt{5}-7) \\
&= \frac{11 \sqrt{5}-7)}{5-47} \\
&= \frac{11 \sqrt{5}-77}{-44} \\
&= \frac{(\sqrt{5}-7)}{-4}(-1) \\
&=-\sqrt{5}+7 \\
&(-1)
\end{aligned} \quad \frac{7-\sqrt{5}}{4}
$$

(E)

$$
\text { E) } \begin{aligned}
& \frac{2}{\frac{4}{3 \sqrt{5}-4}(3 \sqrt{5}+4) \frac{2}{3 \sqrt{5}-4}}(3 \sqrt{5}+4) \\
& =\frac{6 \sqrt{5}+8}{9-5-16} \\
& =\frac{6 \sqrt{5}+8}{29}
\end{aligned}
$$

(F)

$$
\frac{6}{\sqrt{4 x}+1} \cdot(\sqrt{4 x}-1)
$$

$$
=\frac{(12 \sqrt{x}-6)}{(4 x-1)}
$$

Example 6:
When asked to rationalize the denominator in the expression $\frac{4}{2+\sqrt{7}}$ your friend said he could just multiply the expression by $\frac{\sqrt{7}}{\sqrt{7}}$. Explain why this would not work.

Textbook Questions: page 289-293, \#1 (a), (c), 2 (b), (d), 4, 5, 8, 9, 10, 11, 13, 15, 17, 20, $21,22,23,24,26$

