6.3 Adding and Subtracting Rational Expressions

To begin this section we will take a look at adding and subtracting fractions in a different way:

Example 1:
Simplify the following.

(A) $\frac{6}{7}+\frac{2}{7}$

$$
\begin{aligned}
& =\frac{6+2}{7} \\
& =\frac{8}{7}
\end{aligned}
$$

$$
\text { (C) } \frac{1}{3}+\frac{7}{12} \quad L C D: 2 \cdot 2 \cdot 3
$$

$$
\begin{aligned}
& =\frac{1}{3}+\frac{7}{2 \cdot 2 \cdot 3} \\
& =2 \cdot 2 \cdot 1 \\
& 2 \cdot 2 \cdot \frac{7}{2 \cdot 2 \cdot 3} \\
& =\frac{4}{2 \cdot 2 \cdot 3}+\frac{7}{2 \cdot 2 \cdot 3}
\end{aligned}\left[\begin{array}{l}
\text { }
\end{array} \quad=\frac{4+7}{2 \cdot 2 \cdot 3}\right.
$$

(B) $\frac{4}{5}-\frac{1}{5}$
$=\frac{4-1}{5}$
$=\frac{3}{5}$
(D) $\frac{1}{3}+\frac{3}{4}$

LC1D: 2.2.3

Adding/Subtracting Rational
Expressions
Steps:

- Reduce the rational expressions first if possible.
- Get a common denominator.
- Rewrite each fraction with equivalent fractions so that each one has the common denominator.
- Add/subtract the numerators.
- Keep the common denominator the same.
- Reduce/simplify the the answer if possible.
- State restrictions.

Example 2:
Complete the following table:

Rational Number	LCM	Rational Expres- sion	LCM	Similarities
$\frac{4}{5}+\frac{3}{5}$	5	$\frac{6}{2 x-1}+\frac{-2}{2 x-1}$	$2 x-1$	same denominator
$\frac{1}{5}-\frac{7}{15}$	3.5	$\frac{4 x}{x-3}-\frac{5}{6 x-18}$	$6(x-3)$	One denominator is a mat ip of the other
$\frac{7}{12}+\frac{3}{8}$	2.2 .2 .3	$\frac{2}{x^{2}-36}+\frac{4}{3 x+18}$	$3(x+6)(x-6)$	Both denom, a tors hare a comm factor.

Example 3:

$$
\begin{aligned}
& =\frac{3}{(x+5)}-\frac{1}{4(x+5)} \frac{1^{\frac{3}{x+5}-\frac{1}{4 x+20}}}{\operatorname{Lco}: 4(x+5)} \\
& =4 \cdot \frac{3}{4 \cdot(x+5)}-\frac{1}{4(x+5)} \\
& =\frac{12}{4(x+5)}-\frac{1}{4(x+5)}
\end{aligned} \quad \rightarrow \frac{12-1}{4(x+5)}
$$

Example 4:

$$
\begin{aligned}
& (x-1) \frac{x^{2}}{x+1}-\frac{x^{2}}{x-1} L(x+1) \frac{1}{(x+1)}-(x+1)(x-1) \\
= & (x-1) \\
= & \frac{\left(x^{3}-x^{2}\right)}{(x+1)(x-1)}-\frac{(x+1)}{(x+1)(x-1)} \\
= & \frac{\left(x^{3}-x^{2}\right)-(x+6)}{(x+1)(x-1)} \\
= & \frac{x^{3}-x^{2}-x-1}{(x+1)(x-1)}, x \neq \pm 1
\end{aligned}
$$

Example 5:

$$
\begin{aligned}
& \\
= & (x-1) \cdot \frac{3}{2 x}+\frac{4}{(x-1)}<\cos : 2 x(x-1) \\
= & \frac{(3 x-3)}{2 x(x-1)}+\frac{8 x}{2 x} \cdot \frac{4}{2 x(x-1)} \\
= & \frac{3 x-3+8 x}{2 x(x-1)} \\
= & \frac{11 x-3}{2 x(x-1)}, x \neq 0,1
\end{aligned}
$$

Example 6:

$$
\begin{aligned}
& =\frac{7}{(x+3)(x-3)}+\frac{1}{4(x+3)}<\cos : 4(x+3)(x-3) \\
& =4 \frac{7}{x^{2}-9}+\frac{1}{4 x+12} \\
& =\frac{(x-3) \frac{1}{(x+3)(x-3)}+\frac{28}{4(x+3)(x-3)}+\frac{(x-3)}{4(x+3)(x-3)}}{=\frac{28+x-3}{4(x+3)(x-3)}} \\
& =\frac{x+25}{4(x+3)(x-3)}, x \neq \pm 3
\end{aligned}
$$

Example 7:

$$
\begin{aligned}
& =\frac{x}{(x+1)(x-4)}-\frac{4}{(x+1)} L \cos :(x+1)(x-4) \\
& =\frac{x}{(x+4)(x-4)}-(x-4) \frac{4}{(x-4)} \frac{4}{(x+1)} \\
& =\frac{x}{(x+1)(x-4)}-\frac{(4 x-16)}{(x+1)(x-4)} \\
& =\frac{x-4 x+16}{(x+1)(x-4)} \\
& =\frac{-3 x+16}{(x+1)(x-4)}, x \neq-1,4
\end{aligned}
$$

Common Mistakes
A common student error involves adding or subtracting the numerators without first writing the fractions with a common denominator. For example:

$$
\frac{x}{5}+\frac{2}{3}=\frac{x+2}{8}
$$

The correct solution is: L¢D:3•5

$$
\frac{3 \cdot x}{3 \cdot 5}+\frac{5}{5 \cdot \frac{2}{3}}=\frac{3 x}{3 \cdot 5}+\frac{10}{3 \cdot 5}=\frac{3 x+10}{3 \cdot 5}=\frac{3 x+10}{15}
$$

Remind students to be careful when subtracting rational expressions. They sometimes forget to distribute the negative sign when there is more than one term in the numerator. For example:

$$
\frac{3 x-2}{(x+2)(x-2)}-\frac{((2 x-4)}{(x+2)(x-2)}=\frac{3 x-2-2 x-4}{(x+2)(x-2)}
$$

As with simplification, using brackets around binomials can help avoid this mistake. The correct solution is:

$$
\begin{aligned}
& =\frac{3 x-2-(2 x-4)}{(x+2)(x-2)} \\
& =\frac{3 x-2-2 x+4}{(x+2)(x-2)} \\
& =\frac{(x+2)}{(x+2)(x-2)} \\
& =\left.\frac{1}{(x-2)}\right|^{k \neq} \pm 2
\end{aligned}
$$

Example 8:

$$
\begin{aligned}
& =\frac{(A)}{(2 x+7)}-\frac{5 x}{(-3 x-21)} \\
& =\frac{x+7}{2(x+7)}-\frac{5 x}{-3(x+7)(-1)} \\
& =\frac{x+7}{2(x+7)}-\frac{(-5 x)}{3(x+7)} \\
& =3(x+2 \cdot 3(x+7) \\
& =\frac{(x+7)}{2(x+7)}-2 \frac{(-5 x)}{2(x+7)} \\
& =\frac{3 x+21}{2 \cdot 3(x+7)}-\frac{(-10 x)}{2 \cdot 3(x+7)} \\
& =\frac{3 x+21-(-10 x)}{2 \cdot 3(x+7)} \\
& =\frac{3 x+21+10 x}{2 \cdot 3(x+7)} \\
& =\frac{13 x+21}{6(x+7)}, x \neq-7
\end{aligned}
$$

$$
\begin{aligned}
& \text { (B) } \frac{(2 x-6)}{x^{2}-x-6}-\frac{(3 x+12)}{x^{2}+x-12} \\
& \text { L(1): }(x+2)(x-3)(x+4) \\
& =\frac{2(x-3)}{(x+2)(x-3)}-\frac{3(x+4)}{(x-3)(x+4)} \\
& =(x+4) \quad 2(x-3)-(x+2) \cdot 3(x+4) \quad=\frac{2(x-3)}{(x+2)(x-3)}-\frac{3(x+4)}{(x-3) x+4)} \\
& (x+4) \overline{(x+2)(x-3)} \quad(x+2) \overline{(x-3)(x+4)}=\frac{2(x-3)}{(x+2)(x-3)}-\frac{3}{(x-3)} \\
& =\frac{2\left(x^{2}+x-12\right)}{(x-3)(x+2)(x+4)}-\frac{3\left(x^{2}+6 x+8\right)}{(x-3)(x+2)(x+4)}=\frac{(x+2)(x-3)(x-3)}{\left(x+2(x-3)-(x+2) \frac{3}{(x+2)(x-3)}\right.} \\
& =\frac{2 x^{2}+2 x-24-3 x^{2}-18 x-24}{(x-3)(x+2)(x+4)}=\frac{2 x-6-(3 x+6)}{(x+2)(x-3)} \frac{(x+2)(x-3)}{(x)} \\
& =\frac{-x^{2}-16 x-48}{(x-3)(x+2)(x+4)} \\
& =\frac{-1\left(x^{2}+16 x+48\right)}{(x-3)(x+2)(x+4)} \\
& =\frac{2 x-6-3 x-6}{(x+2)(x-3)} \\
& \left.=\frac{-x-12}{(x+2)(x-3)}, x \neq-4,-2,3\right) \\
& =\frac{-1(x+4)(x+12)}{(x-3)(x+2)(x+4)} \\
& =\frac{-(x+12)}{(x-3)(x+2)} \\
& =\frac{-x-12}{(x-3)(x+2)}, x \neq-4,-2,3
\end{aligned}
$$

Complex Fractions
A complex fraction is an example of an expression involving two or more operations on a rational expression. In order to avoid errors, you should place brackets appropriately and use the order of operations correctly.

Steps:

- simplify both the numerator and denominator
- invert and multiply
- simplify

Example 9:
(A) Simplify and state all non-permissible values:

$$
\begin{aligned}
& \text { Method I: Recite } \\
& \frac{1+\frac{1}{x}}{x-\frac{1}{x}} \\
& \left(1+\frac{1}{x}\right) \div\left(x-\frac{1}{x}\right)^{200 \cdot x} \\
& =\binom{x \cdot \frac{1}{x}+\frac{1}{x}}{x} \div\left(\begin{array}{l}
x \cdot \frac{x}{x} \\
x \\
x
\end{array}-\frac{1}{x}\right) \\
& =\left(\frac{x}{x}+\frac{1}{x}\right)=\left(\frac{x^{2}}{x}-\frac{1}{x}\right) \\
& \begin{array}{l}
=\left(\frac{x+1}{x}\right) \div\left(\frac{x^{2}-1}{x}\right) \\
=(x+1)-\left(\frac{x}{x-1}\right)
\end{array} \\
& \left(\frac{x+1}{x}\right) \cdot\left(\frac{x}{(x-1)(x+1)}\right) \\
& =\frac{1}{x-1}, x \neq 0, \pm 1 \\
& \text { Method 2: LC1 } \\
& \left(x^{\left.\frac{k}{2}-\frac{1}{x}\right) x}\left(\frac{k}{x}\right)\right. \\
& =\frac{\left(x+\frac{x}{x}\right)}{\left(x^{2}-\frac{x}{x}\right)} \\
& =\frac{(x+1)}{\left(x^{2}-1\right)} \\
& =\frac{(x+1)}{(x-1)(x+1)} \\
& =\frac{1}{x-1}, x \neq 0, \pm 1
\end{aligned}
$$

(B) Simplify and state all non-permissible values:

$$
\begin{aligned}
& {\left[\begin{array}{l}
\frac{\frac{1}{x+2}+\frac{1}{x-2}}{\frac{x}{x^{2}-4}+\frac{1}{x+2}} \\
\frac{1}{(x+2)}+\frac{1}{(x-2)} \\
\frac{x}{(x-2)(x+2)}+\frac{1}{(x+2)}
\end{array}\right](x+2)(x+2)(x+2)(x-2) } \\
= & \frac{(x+2)(x-2)}{(x+2)}+\frac{(x+2)(x-2)}{(x-2)} \\
= & \frac{x(x+2)(x-2)}{(x-2)(x+2)}+\frac{(x+2)(x-2)}{x+2)} \\
= & \frac{2 x}{2 x-2}+x+2 \\
= & \frac{2 x}{2(x-1)} \\
= & \frac{x}{x-1} 1 x \neq \pm 2,1
\end{aligned}
$$

(C)

$$
\begin{aligned}
& \frac{\left(1+\frac{1}{x}\right) x^{2}}{\left(1-\frac{1}{x^{2}}\right) x^{2}} \quad \text { LCD: } x \cdot x=x^{2} \\
&=\left(x^{2}+\frac{x^{2}}{x}\right) \\
&\left(x^{2}-\frac{x^{2}}{x^{2}}\right) \\
&= \frac{x^{2}+x}{x^{2}-1} \\
&= \frac{x(x+1)}{(x-1)(x+1)} \\
&= \frac{x}{x-1}, x \neq 0, \pm 1
\end{aligned}
$$

Example 10:
Find the area of the shaded region:

Textbook Questions: page $336-340$ \#1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 18, 19

