6.4A Rational Equations

Now that we've learned to work with rational expressions, we can now piece them together and work with rational equations. A rational equation is an equation containing one or more rational expression. For example:

$$
\frac{5}{x}=\frac{4}{x+2}
$$

We can use the techniques of multiplying/dividing and adding/subtracting that we learned earlier in this chapter to solve an equation for a variable. The difference now is that we don't use the LCD to get a common denominator for two or more rational expressions. Instead we use the LCD to eliminate the denominator in each rational expression.

To solve a rational equation:

- factor each denominator
- identify the non-permissible values
- multiply both sides of the equation by the lowest common denominator
- solve by isolating the variable on one side of the equation
- check your answers

Example 1:

Solve the following equation for x :
(A)

$x=4$
(B) $\frac{x}{4}-\frac{7}{x}=3 \quad c \Delta: 4 x$

$$
\begin{aligned}
& \frac{x x}{4}-4 \cdot x \cdot \frac{7}{x}=4 \cdot x \cdot 3 \\
& x^{2}-28=12 x \\
& x^{2}-12 x-28=0 \\
& (x+2)(x-14)=0 \\
& x=-2, x=14, x \neq 0
\end{aligned}
$$

(C)

$$
\begin{gathered}
\frac{3}{x}+\frac{7}{2 x}=\frac{1}{5} \quad \text { CD: } 2 \cdot 5 \cdot x \\
30+3 \cdot \frac{3}{x}+2 \cdot 5 \cdot \frac{7}{2 x}=2 \cdot 8 \cdot x \cdot \frac{1}{5} \\
\frac{65}{2}=\frac{2 x}{2} \\
x=65 / 2 \quad 1 x \neq 0
\end{gathered}
$$

(D)

$$
\begin{aligned}
& \frac{2 x^{2}+1}{x+3}=\frac{x}{4}+\frac{5}{x+3} \quad C D: 4(x+3) \\
& 4 \cdot(x+3) \cdot \frac{\left(2 x^{2}+1\right)}{(x+3)}=A(x+3) \cdot \frac{x}{4}+4(x+3) \cdot \frac{5}{(x+3)} \\
& 8 x^{2}+4=x^{2}+3 x+20 \\
& 8 x^{2}-x^{2}-3 x+4-20=0 \\
& 7 x^{2}-3 x-16=0 \\
& x=\frac{-(-3) \pm \sqrt{(-3)^{2}-4(7)(-16)}}{2(7)} \\
& x=\frac{3 \pm \sqrt{457}}{14} \\
& x=\frac{3+\sqrt{457}}{14}, x=\frac{3-\sqrt{457}}{14}, x \neq-3
\end{aligned}
$$

(E)

$$
\begin{gathered}
\frac{2}{(z+2)(z-2)}+\frac{\frac{2}{z^{2}-4}+\frac{10}{6 z+12}=\frac{1}{z-2} \quad(z+2)}{6(z+6(z+2)(z-2)} \begin{array}{c}
(z-2) \\
6(z+2)(z-2) \cdot \frac{2}{(z(2)(z)-2)}+6(z+0)(z-2) \cdot 10 \\
12+10 z-20=6 z+12 \\
10 z-6 z=12+8 \\
\frac{4 z}{4}=\frac{20}{4} \\
z=5, z \neq+2)(z-2) \cdot 1 \\
(z-2) \\
6
\end{array}
\end{gathered}
$$

(F)

$$
\begin{gathered}
\frac{9}{(y-3)}-\frac{4}{(y-6)}=\frac{18}{(y-3)(y-6)}-\frac{4}{y-6}=\frac{18}{y^{2}-9 y+18} \\
(y-3)(y-6) \cdot \frac{9}{y+3)}-(y-3)(y-6)(y-6) \\
9 y-54-4 y+12=18 \\
5 y=18+54-12 \\
\frac{5 y}{5}=\frac{60}{5} \\
y=12, y \neq 3,6
\end{gathered}
$$

Extraneous Roots
We dealt with extraneous solutions in Chapter 5 . As before, we simply plug our solutions back into the original equation and check to see if the left side equals the right side.

Example 2:
Solve for x. State all non-permissible values and any extraneous roots:
(A)

$$
\begin{gathered}
\frac{(2 x+3)}{(x+5)}+\frac{1}{2}=\frac{-14}{2(x+5)}=\frac{-14}{2 x+10} \\
2(x+5) \frac{(2 x+3)}{(x+5)}+2(x+5) \cdot \frac{1}{2}=2(x+5) \frac{(-14)}{2(x+5)} \\
4 x+6+x+5=-14 \\
5 x=-14-11 \\
\frac{5 x}{5}=-\frac{25}{5} \\
x=-5, x \neq-5 \\
\text { No solution. }
\end{gathered}
$$

$$
\begin{aligned}
& \text { (B) } \\
& \frac{4 k-1}{k+2}-\frac{k+1}{k-2}=\frac{k^{2}-4 k_{k}+24}{k^{2}-4} \operatorname{CD}:(k+2)(k-2) \\
& \frac{(4 k-1)}{(k+2)}-\frac{(k+1)}{(k-2)}=\frac{k^{2}-4 k+24}{(k+2)(k-2)} \\
& (k+2)(k-2) \cdot \frac{(4 k-1)}{(k+2)}-(k+2)(k-2) \cdot(k+1) \frac{(k+2)(k-2) \frac{(k-4 k+24)}{(k-2)}}{(k+2)(k-2)} \\
& 4 k^{2}-9 k+2-\left(k^{2}+3 k+2\right)=k^{2}-4 k+24 \\
& 4 k^{2}-9 k+2-k^{2}-3 k-2-k^{2}+4 k-24=0 \\
& \frac{2 k^{2}-8 k-24}{2}=\frac{0}{2} \\
& k^{2}-4 k-12=0 \\
& (k-6)(k+2)=0 \\
& k=6, k>-2, k \neq \pm 2 \\
& \frac{4(6)-1}{6+2}-\frac{6+1}{6-2}=\frac{6^{2}-4(6)+24}{6^{2}-4} \\
& \frac{23}{8}-\frac{7 \cdot 2}{42}=\frac{36}{32} \\
& \frac{23}{8}-\frac{14}{8}=\frac{9}{8} \\
& \frac{9}{8}=\frac{9}{8}
\end{aligned}
$$

(C)

$$
\begin{aligned}
& \frac{3 x}{(x+2)}-\frac{5}{(x-3)}=\frac{-25}{(x+2)(x-3)}-\frac{5}{x-3}=\frac{-25}{x^{2}-x-6} \\
& (x+2)(x-3) \cdot \frac{3 x}{(x+2)}-(x+2)(x-3) \\
& 3 x^{2}-9 x-5 x-10=-25 \\
& 3 x^{2}-14 x+15=0 \frac{45}{5,9} \\
& 3 x^{2}-9 x-5 x+15 \\
& 3 x(x-3)-5(x-3) \\
& (x-3)\left(3 x-\frac{3)}{(x+2)(x-35)}\right. \\
& \quad x)(3 x-5)=0 \\
& \text { (x-3)}=\frac{5}{3}, x \neq 3
\end{aligned}
$$

Check:

$$
\begin{aligned}
& \frac{z\left(\frac{5}{3}\right)}{\frac{5}{3}+2 \cdot \frac{3}{3}}-\frac{5}{\frac{5}{3}-3 \cdot \frac{3}{3}}=\frac{-25}{\left(\frac{5}{3}\right)^{2}-\frac{5}{3} \cdot \frac{3}{3}} \cdot 6 \cdot 9 \\
& \frac{5}{\frac{11}{3}}-\frac{5}{-\frac{4}{3}}=\frac{-25}{\frac{25}{9}-\frac{15}{9}-\frac{54}{9}} \\
& 4 \cdot \frac{15}{4 \cdot 11}+\frac{15 \cdot 11}{4 \cdot 11}=\frac{-25}{-\frac{44}{9}} \\
& \frac{60}{44}+\frac{165}{44}=\frac{225}{44}
\end{aligned}
$$

