7.3 Absolute Value Equations

An absolute value equation is an equation that includes the absolute value of an expression involving a variable.

Graphical Solutions to Absolute Value Equations
What does it means to solve an equation such as $|x-2|=6$? You should look for points whose distance from 2 is 6 . Using a number line, they should realize that both -4 and 8 are at a distance of 6 from 2 . This reasoning will allow you to better understand the solutions when using a graph.

Example 1:

Determine the points of intersection for the absolute value equation $|x-2|=6$ give the graph.
$(-4,6) \div(8,6)$

Algebraic Solutions to Absolute Value Equations

When solving absolute value equations algebraically we use the definition of absolute value. There are two cases to consider:

Case 1: \quad The expression inside the absolute value symbol is positive or zero.
Case 2: \quad The expression inside the absolute value symbol is negative.

Example 2:

Solve: $|x-3|=7$

$$
\begin{array}{cc}
\text { Case 1: } & \text { Case } \\
x-3=7 & -(x-3)=7 \\
x=7+3 & -x+3=7 \\
x=10 & -x=7-3 \\
& -x=4 \\
\text { Check: } & x=-4 \\
|10-3|=7 & |-4-3|=7 \\
171=7 & 1-71=7 \\
7=7 & 7=7
\end{array}
$$

Note: Let's take a look at the graph again. Since $|x-3|=7$ can be expressed as two functions, $f(x)=|x-3|$ and $g(x)=7$, we can find the intersection points by graphing both functions.

Verifying solutions can be done at: https://www.desmos.com/calculator

Common Errors
Before we continue with some examples, lets look at a few common errors.
Common errors include:

- Treating the absolute value sign like parentheses.
- Multiplying a constant by the expression within the absolute value sign. For example: $-2|x-3|=|-2 x+6|$
- Incorrectly placing the negative in front of the variable rather than the entire Expression. For example, when solving $|x-3|=8$, students may write $-x-3=8$ instead of $-(x-3)=8$.
- Not identifying extraneous roots.
- Errors when using the quadratic formula.

Example 3:
Solve $|2 x-5|=5-3 x$.
Case 1:
Case 2:

$$
2 x-5=5-3 x
$$

$-(2 x-5)=5-3 x$

$$
2 x+3 x=5+5
$$

$$
-2 x+5=5-3 x
$$

$-2 x+3 x=5-5$
$x=0$

Check:

$$
\begin{gathered}
|2(2)-5|=5-3(2) \\
14-5 \mid=5-6 \\
1-1 \mid=-1 \\
1 F-1
\end{gathered}
$$

$$
\begin{gathered}
|2(0)-5|=5-3(0) \\
|-5|=5 \\
5=5
\end{gathered}
$$

Example 4:
Illustrate with a graph why $|x-2|=-6$ has no solution.

$$
\begin{aligned}
& y=|x-2| \\
& y=-6
\end{aligned}
$$

An absolute value function can never be equal to a negative value.

Example 5:

$$
\begin{aligned}
& \text { Solve }|3 x-4|+12=9 \\
& |3 x-4|=9-12 \\
& |3 x-4| \neq-3
\end{aligned}
$$

No Solution.

Example 6:
Solve $\left|x^{2}-2 x\right|=1$

Case 1:

$$
\begin{aligned}
& x^{2}-2 x=1 \\
& x^{2}-2 x-1=0 \\
& x=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(-1)}}{2(1)} \\
& x=\frac{2 \pm \sqrt{8}}{2} \\
& x=\frac{2 \pm 2 \sqrt{2}}{2} \\
& x=1 \pm \sqrt{2} \\
& x=1+\sqrt{2}, x=1-\sqrt{2} \\
& \left|(1+\sqrt{2})^{2}-2(1+\sqrt{2})\right|=1 \\
& |1+2 \sqrt{2}+2-2-2 \sqrt{2}|=1 \\
& \mid 11=1 \\
& 1=1 v \\
& \left|(1-\sqrt{2})^{2}-2(1-\sqrt{2})\right|=1 \\
& |1-22 \sqrt{2}+7 x-2 x+2 \sqrt{2}|=1 \\
& 111=1 \\
& 1=1 \sim
\end{aligned}
$$

Case 2:

$$
\begin{gathered}
-\left(x^{2}-2 x\right)=1 \\
-x^{2}+2 x-1=0 \\
x^{2}-2 x+1=0 \\
(x-1)(x-1)=0 \\
x=1
\end{gathered}
$$

check:

$$
\begin{gathered}
\left|1^{2}-2(1)\right|=1 \\
|1-2|=1 \\
|-1|=1 \\
1=16
\end{gathered}
$$

Example 7:

Solve $\left|x^{2}-4\right|=3 x$
Case 1:

$$
\begin{gathered}
x^{2}-4=3 x \\
x^{2}-3 x-4=0 \\
(x+1)(x-4)=0 \\
x-1 \quad x=4
\end{gathered}
$$

Check: $\left|4^{2}-4\right|=3(4)$

$$
\begin{gathered}
112 \mid=12 \\
12=12 v \\
\left|(-1)^{2}-4\right|=3(-1) \\
3 \neq-3
\end{gathered}
$$

Example 8:
Solve $\left|x^{2}-3 x\right|=x$
Case 1:

$$
\begin{aligned}
& x^{2}-3 x=x \\
& x^{2}-3 x-x=0 \\
& x^{2}-4 x=0 \\
& x(x-4)=0 \\
& x=0, x=4
\end{aligned}
$$

Cheek:

$$
\begin{gathered}
\left|0^{2}-3(0)\right|=0 \\
|0|=0 \\
0=0
\end{gathered}
$$

Case 2:

$$
\begin{gathered}
-\left(x^{2}-4\right)=3 x \\
-x^{2}+4=3 x \\
-x^{2}-3 x+4=0 \\
x^{2}+3 x-4=0 \\
(x-1)(x+4)=0 \\
\frac{x=1}{1}, x=-4 \\
11^{2}-4 \mid=3(1) \\
3=3 \\
\left|(-4)^{2}-4\right|=3(-4) \\
12 \neq-12
\end{gathered}
$$

Case 2 :

$$
\begin{aligned}
& -\left(x^{2}-3 x\right)=x \\
& -x^{2}+3 x-x=0 \\
& -x^{2}+2 x=0 \\
& x^{2}-2 x=0 \\
& x(x-2)=0
\end{aligned}
$$

$$
x=0, x=2
$$

$$
\begin{array}{cc}
\left|4^{2}-4(4)\right|=4 & \left|2^{2}-3(2)\right|=2 \\
|16-12|=4 & |4-6|=2 \\
|4|=4 & |-2|=2 \\
4=4 c & 2=2 v
\end{array}
$$

