8.1 Solving Systems of Equations Graphically

Recall from Math 1201, a System of Equations is two or more equations with two or more variables. When graphed, these lines intersect at a point (x, y) or no point if they are parallel. In Level I the only systems of equations looked at were two lines. Here we will look at systems of equations involving a line and a parabola and two parabolas.

System of Linear-Quadratic Equations: A linear equation and a quadratic equation involving the same variables. The graph of this system involves a line and a parabola.

System of Quadratic-Quadratic Equations: two quadratic equations involving the same variables. The graph of this system involves two parabolas.

Any ordered pair (x, y) that satisfies both equations in a system of linear-quadratic or quadratic-quadratic equations is a solution of the system.

For example, the point $(2,4)$ is a solution of the system:

$$
\begin{aligned}
& y=x+2 \\
& y=x^{2}
\end{aligned}
$$

Since it satisfies both equations.
As you can see from the graph, $(2,4)$ as well as the point $(-1,1)$ are both solutions to the linear-quadratic systems of equations. In other words the graphs intersect at these two points.

If a line intersects the parabola more than once, the line is referred to as a secant line.
If the line intersects the parabola at exactly one point, the line is called a tangent line.

Number of Solutions of Linear-Quadratic and Quadratic-Quadratic Equations

intersection
One solution

One point of intersection One solution

Two points of intersection Two solutions

Coincident Systems

Here is a good place to point out that a quadratic - quadratic system can also have an infinite number of solutions. These are called a coincident systems. It's when one parabola lies over another.

Similarly to equivalent rational expressions, a coincident system of quadratic - quadratic equations is a situation where one quadratic equation is a multiple of another.

For example,

$$
\begin{gathered}
x^{2}+2 x+3 y+4=0 \\
2 x^{2}+4 x+6 y+8=0
\end{gathered}
$$

would be an example of a coincident system.

Example 1:
Solve the following system of equations graphically:

$$
\begin{gathered}
4 x-y+3=0 \\
2 x^{2}+8 x-y+3=0
\end{gathered}
$$

Using https://www.desmos.com/calculator, or a TI-80 series graphing calculator we can graph these two functions and look for any possible intersection points:

Example 2:
Solve the system graphically:

$$
\begin{gathered}
2 x^{2}+16 x+y=-26 \\
x^{2}+8 x-y=-19
\end{gathered}
$$

$$
(-5,4),(-3,4)
$$

Working With Systems of Equations Logically

You can find out a lot about a system of equations without actually solving it. The following questions will help us logically figure out characteristics about some particular systems.

Example 3:

How can you tell by observation which of the following systems has no solution and which one has an infinite number of solutions?
(A)
 Q. $4 x^{2}+6 x-2 y+8=0$
 equation (1)
(B)

$$
\begin{aligned}
& y=-(x+1)^{2}-3 \\
& \text { Ser tex }(-1,-3) \text { Since max value of }-3 \text { is below } \\
& \text { the } y=5 \text {, there is no solution. }
\end{aligned}
$$

Example 4:

Do the following lines intersect the parabola shown below at zero, one or two points?
i. $\quad y=\frac{1}{2} x+3$

2 solutions
ii. $\quad y=\frac{1}{2} x-4$
no solut:0)
iii. $\quad y=-2 x$

iv. $\quad x-3=0$
I solution

Textbook Questions: page 435-438 \#2, 3, 4, 5, 7, 8, 12, 13, 14

