8.2B Solving Systems of Equations Algebraically

Determining if a Point is a Solution to a System of Equations

This a very simple process. Simply plug the point into both equations. If it satisfies both equations, the point is a solution to that system.

Example 1:

Sam solved the system:

$$
\begin{aligned}
& \text { (1) } 2 x-y=9 \\
& \text { (2) } y=x^{2}-4 x
\end{aligned}
$$

$X \quad y$

His solution is $(3,-3)$. Is his solution correct?

$$
\begin{aligned}
(1) & (3)-(-3)=9 & (2) & -3 \\
6+3=9 & -4(3) & -3 & =\{-12 \\
9 & & -3 & =-3
\end{aligned}
$$

Predicting the Number of Solutions

Recall the discriminant from Chapter 4.

$$
D=b^{2}-4 a c
$$

We used the discriminant to determine the number of roots a quadratic function had.

$$
\begin{aligned}
& D>0, \text { two roots } \\
& D=0, \text { one root } \\
& D<0, \text { no roots }
\end{aligned}
$$

We can use the discriminant to determine the number of solutions in a linear-quadratic and a quadratic-quadratic system of equations. The process is the same as solving a system of equations except once you have the final quadratic, simply find the discriminant.

Example 2:
How many solutions does the following system of equations have?

$$
\begin{array}{cl}
y=y & \text { (2) } y=3 x^{2}-2 x-4 \\
3 x+5=3 x^{2}-2 x-4 & y=b^{2}-4 a c \\
0=3 x^{2}-2 x-3 x-4-5 & D=(-5)^{2}-4(3)(-9) \\
0=3 x^{2}-5 x-9 & 1=133>0
\end{array}
$$

\therefore There are two solutions.

Example 3:
How many solutions does the following system of equations have?

$$
\begin{array}{ll}
y=4 & \begin{array}{ll}
y=2 x-7 \\
x^{2}+2 x=2 x-7 & y=x^{2}+2 x \\
x^{2}+7=0 & \therefore \text { No } \\
D=b^{2}-4 a c & \\
D=0^{2}-4(1)(7) & \\
D=-28<0
\end{array}
\end{array}
$$

More Applications Involving Systems of Equations
Example 4:
A rectangular field has a perimeter of 500 m and an area of $14400 \mathrm{~m}^{2}$. Find the length of the sides.

$$
\frac{2 x+2 y}{2}=\frac{500}{2}
$$

$$
\text { (2) } x \cdot y=14400
$$

$$
\text { (1) } x+y=250 \quad x(-x+250)=14400
$$

Solve (1) For y.

$$
y=-x+250
$$

$$
-x^{2}+250 x-14400=0
$$

Sub (1) into (2)

$$
\begin{aligned}
& x=\frac{-(-250) \pm \sqrt{(-250)^{2}-4(1)(14400)}}{2(1)} \\
& x=\frac{250 \pm \sqrt{4900}}{2} \\
& x=\frac{250 \pm 70}{2} \\
& x=\frac{250-70}{2}, x=\frac{250+70}{2} \\
& x=90 \\
& y=-90+250, \quad y=-160 \\
& y=160 \\
& y=90 \\
& 90
\end{aligned}
$$

Example 5:
Find a system of equations that represents two natural numbers that differ by 4 and whose squares have a sum of $\$ 36 ? \frac{1}{\Gamma}$

$$
x-y=4 \quad\left(0 x^{2}+y^{2}=136\right.
$$

(1) $x-4=y$

Sub (1) into (2)

$$
\begin{aligned}
& x^{2}+(x-4)^{2}=136 \\
& x^{2}+x^{2}-8 x+16-136=0 \\
& \frac{2 x^{2}-8 x-120}{2}=\frac{0}{2} \\
& x^{2}-4 x-60=0 \\
& (x+6)(x-10)=0 \\
& x--6, x=10 \\
& y=10-4=6
\end{aligned}
$$

Example 6:
A right triangle has a hypotenuse 10 cm long. If the perimeter is 22 cm , find the lengths of the other two sides.

$$
\begin{aligned}
& x+y+10=2 \\
& x+y=22-10 \\
& \text { (1) } x+y=12
\end{aligned}
$$

Solve (1) for y

$$
\begin{equation*}
y=-x+12 \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& x=\frac{-(-.2) \pm \sqrt{(-12)^{2}-4(1)(22)}}{2(1)} \\
& x=\frac{12 \pm \sqrt{56}}{2} \\
& x=\frac{12 \pm 7.48}{2} \\
& x=\frac{12-7.48}{2}, x=\frac{12+7.48}{2} \\
& x=2.25, x=9.75 \\
& y=12-3.25, y=12-9.75 \\
& =9.75, \quad y=2.25
\end{aligned}
$$

Example 7:
The right triangle shown has a perimeter of 24 cm and an area of $(2 y+14) \mathrm{cm}^{2}$. Algebraically determine the value (s) of x and y.

$$
\begin{gathered}
x+3+x+5+2 y=24 \\
2 x+2 y+8=24 \\
2 x+2 y=24-8 \\
\frac{2 x+2 y}{2}=\frac{16}{2}
\end{gathered}
$$

(1) $x+y=8$

Solve (1) for y

$$
y=-x+8
$$

Sub (1) info (2)

$$
2 y+14=\frac{1}{2}(x+5)(x+3)
$$

$$
2(2 y+14)=\frac{1}{2}\left(x^{2}+8 x+15\right) \cdot z
$$

(2) $4 y+28=x^{2}+8 x+15$
$4(-x+8)+28=x^{2}+8 x+15$
$-4 x+32+28=x^{2}+8 x+15$
$0=x^{2}+5 x+4 x+15-60$
$0=x^{2}+12 x-45$
$0=(x-3)(x+15)$

$$
x=3, x \neq \lll
$$

$$
y=-3+8
$$

$$
y=5
$$

Example 8:
A sky diver jumped from a tower and fell freely for several seconds before releasing her parachute. Her height, h, in metres, above the ground at any time is given by $h=-4.9 t^{2}+5000$ before she released her parachute, and $h=-4 t+4000$ after she released her parachute.
(A) If t represents time in seconds, how long after jumping did she release her parachute?

$$
0=4.9 t^{2}-4 t-1000
$$

$$
t=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(4.9)(-1000)}}{2(4.9)}
$$

$$
\begin{aligned}
& t=\frac{4 \pm \sqrt{19616}}{9.8} \\
& t=\frac{4 \pm 140.1}{9.8}
\end{aligned}\left\{\begin{array}{l}
t=\frac{4-140.1}{9.8}=-73.9 \mathrm{~s} \\
t=\frac{4+140.1}{9.8}=14.7 \mathrm{~s} .
\end{array}\right.
$$

(B) How high was she above the ground at that time?

$$
h=-4(14.7)+4000=3941.2 n
$$

Textbook Questions: page $451-455 \# 1,2,6,8,9,10,11,13,19$

