\qquad
1.6 Reasoning to Solve Problems

Here you will be exposed to problem solving situations that require the use of inductive and/or deductive reasoning. You will explore some situations where you are asked to first show inductively that a pattern exists and then prove it deductively. It is important to recognize that inductive and deductive reasoning are not separate entities, they work together. Consider the following example:

Tyler was investigating patterns on the hundreds chart. He was asked to choose any four numbers that form a 2×2 square on the chart. He chose the following:

4	5
14	15

He should be able to use inductive reasoning to make a conjecture about the sum of each diagonal and then use deductive reasoning to prove his conjecture is always true.

Deductive:

$$
\begin{aligned}
& n+n+11=2 n+11 \\
& n+1+n+10=2 n+11 \\
& \text { QED }
\end{aligned}
$$

Example 1:
Emma was given this math trick:

- Choose a number.
- Multiply by 6 .
- Add 4.
- Divide by 2 .
- Subtract 2.

Emma was asked to use inductive reasoning to make a conjecture about the relationship between the starting and ending numbers, and then use deductive reasoning to prove that her conjecture is always true.

Example 2:
Ten men meet for a bowling tournament and each shakes the hand of every other man. Determine the number of handshakes that occurred. Explain the strategy used to arrive at the answer.
Istguy: shines 9 hods
and guy: Shute 8 other tads
Ind guy: Shanks 7 other tads
10nth gay: Shuttles 1 other had

$$
9+8+7+6+5+4+3+2+1=45
$$

Example 3:
Look at a monthly calendar and pick any 3 squares in a row-across, down or diagonal. Using inductive reasoning, make a conjecture about the middle number, then use deductive reasoning to prove the conjecture.
Inductive:
$10+26=2(18)$
$12+24=2(18)$
$17+19=2(18)$
$11+25=2(18)$
Conjecture: the sum of
the corners is

twice the middle
number.

$$
\text { Deductive: } \begin{aligned}
& n-m+n+m \\
= & 2 n
\end{aligned}
$$

Your turn:
Solve each problem using reasoning:
(A) If you have a 5-L and 3-L bottle and plenty of water, how can you get 4-L of water in the 5-L bottle?

- Fill up 3-L bottle
- pour in S-L bottle
- Fill up $3<$ bottle <gan.
- Pour into the 5-L bottle until 5-L bottle isfull. - Dump the 5-2 bottle
- Pour remaining $1 L$ in 3-L bottle in S-L bottle
- Fill up 3-L bottle again
- Pour 3-L into the S-L bottle.
(B) Ted, Ken, Allyson, and Janie (two married couples) each have a favourite sport: swimming, running, biking, and golf. Given the following clues, determine who likes which sport.
- Ted dislikes golf.
- Each woman's favourite sport is featured in a triathlon.
- Ken nor his wife enjoy running.
- Allyson bought her husband a new bike for his birthday to use in his favourite sport.

$$
\begin{array}{ll}
\text { Ken } \rightarrow \text { golfs } & \text { Ted-Allyson } \\
\text { Ted } \rightarrow \text { bikes } & \text { Ken-Janie } \\
\text { Allyson } \rightarrow \text { runs } & \\
\text { Tunic } \longrightarrow \text { swims } &
\end{array}
$$

(C) Determine the number of squares that would be in the next, $4^{\text {th }}$, figure.

Textbook Questions: page 49-51 \#3, 4, 5, 6, 9, 13, 16

