1.6 Reasoning to Solve Problems

Here you will be exposed to problem solving situations that require the use of inductive and/or deductive reasoning. You will explore some situations where you are asked to first show inductively that a pattern exists and then prove it deductively. It is important to recognize that inductive and deductive reasoning are not separate entities, they work together. Consider the following example:

Tyler was investigating patterns on the hundreds chart. He was asked to choose any four numbers that form a 2×2 square on the chart. He chose the following:

4	5	
14	15	

He should be able to use inductive reasoning to make a conjecture about the sum of each diagonal and then use deductive reasoning to prove his conjecture is always true.

Conjecture: the sum of the diagonaly of a square of four blocks Inductive: 4 + (5 = 19)on a hundreds charf will be 5+14=19 equal. Deductive: ッナー ハ+1+11=2n+11 n+1+n+10=2n+11NEN

Example 1:

Emma was given this math trick:

- Choose a number.
- Multiply by 6.
- Add 4.
- Divide by 2.
- Subtract 2.

Emma was asked to use inductive reasoning to make a conjecture about the relationship between the starting and ending numbers, and then use deductive reasoning to prove that her conjecture is always true.

Inductive	2:	Conjecture: the answer is always
	12	three times the original
-	72	number
— •	76	Deductive: n
26 24	38 36	$\frac{6n+4}{-2}$
-(7.0	2
		=3n+2-2
		=3n
		QEN

Example 2:

Ten men meet for a bowling tournament and each shakes the hand of every other man. Determine the number of handshakes that occurred. Explain the strategy used to arrive at the answer.

Example 3:

Look at a monthly calendar and pick any 3 squares in a row-across, down or diagonal. Using inductive reasoning, sk make a conjecture about the middle number, then use deductive reasoning to prove the conjecture.

Inductive:

$$10+a6=a(18)$$

 $1a+a4=a(18)$
 $17+19=a(18)$
 $11+a5=a(18)$
(or jecture: the sum of
the corners is
tuice the middle
Number.

2016 MAY								
SUN	MON	TUE	WED	THU	FRI	SAT		
1	2	3	4	5	6	7		
8	9	10 1-m	11	12	13	14		
15	16	17	18 18	19	20	21		
22	23	24	25	26 14	27	28		
29	30	31		-	_			

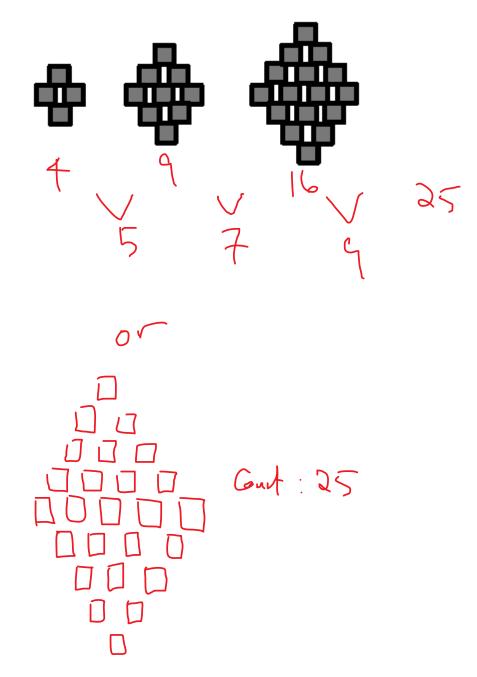
Your turn:

Solve each problem using reasoning:

(A) If you have a 5-L and 3-L bottle and plenty of water, how can you get 4-L of water in the 5-L bottle?

- (B) Ted, Ken, Allyson, and Janie (two married couples) each have a favourite sport: swimming, running, biking, and golf. Given the following clues, determine who likes which sport.
 - Ted dislikes golf.
 - Each woman's favourite sport is featured in a triathlon.
 - Ken nor his wife enjoy running.
 - Allyson bought her husband a new bike for his birthday to use in his favourite sport.

Kien->golfs Ted-Allyson Ted->bikes Ken-Janie Allyson > runs Tunic -> Swims



(C) Determine the number of squares that would be in the next, 4th, figure.