Math 2201

Date:__

2.1 Exploring Parallel Lines

In Grade 7, you identified parallel and perpendicular lines and used various strategies to draw a line segment that was perpendicular or parallel to a given line segment .

Where in real-life do you see parallel lines?

Roads. Rail lines.

Provide an example of a situation where it is important for lines to be parallel. What would happen if they were not parallel?

Raillines. Train would derail.

A **transversal** is a line that intersects two or more other lines at distinct points.

Complementary and Supplementary Angles

Complementary angles are angle pairs that have a sum of 90° . They do not have to be adjacent. Any two angles that add up to 90° , like the angles to the right, are complementary.

130°

Supplementary angles are angle pairs that have a sum of 180°. They do not have to be adjacent. Any two angles that add up to 180°, like the angles to the left, are supplementary.

Vertically Opposite Angles

Angles that are formed at the intersection of two lines, and are directly opposite to each other. These angles are equal.

Transversals of Parallel Lines

When a transversal intersects two parallel lines, there are properties that remain consistent.

Example 1:

How many angles are formed when a transversal intersects two parallel lines?

a, b, c, and d are interior angles.

e, f, g, and h are exterior angles.

Corresponding Angles

non-adjacent and on the same side of a transversal.

Interior Angles

Any angles formed by a transversal and two parallel lines that lie inside the parallel lines.

$$a + b = (83)^{\circ} \quad a = c$$

 $d + c = 183^{\circ} \quad b = d$

Exterior Angles

Any angles formed by a transversal and two parallel lines that lie outside the parallel lines.

Example 2: Find all the missing angles:

When workers paint lines for a parking lot, they aim to paint lines that are parallel to each other. The lines in a parking lot, therefore, provide an ideal illustration of the relationship between angles created by parallel lines and a transversal

Why would a parking lot have parallel lines that intersect at non-right angles?

lo save space.

Why would a parking lot have one way traffic?

To make accessability in a small parking lot

In Summary, when a transversal cuts two parallel lines:

- Corresponding angles are equal.
- Vertically opposite angles are equal.
- Interior angles on the same side of the transversal are supplementary.

Transversals of Non-Parallel Lines

Do the conjectures about angle measures holds true if a transversal intersects a pair of nonparallel lines? As we can see by the following diagram, not all angle properties apply in this case. In fact, only **vertically opposite** angles remain equal.

Textbook Questions: page 72 #2, 4, 5, 6