\qquad

2.2B Proving Properties of Angles Formed by Transversals and Parallel Lines

You have explored the angle relationships when two parallel lines are cut by a tranversal. You will now use this knowledge of corresponding angles, vertically opposite angles and supplementary angles to formally prove the other relationships, such as alternate interior angles.

The Transitive Property

If two angles are equal to the same thing, then they are equal to each other.

$$
\begin{aligned}
& \text { If } A=B \text { and } B=C \text {, } \\
& \text { then } A=C .
\end{aligned}
$$

A two-column proof and a paragraph proof are two of the most common strategies used to construct proofs involving properties of angles formed by transversals and parallel lines.

Let's make a conjecture that involves alternate exterior angles formed by parallel lines and a transversal.

Conjecture: alternate exterior angles are equal
We'll use the following to prove this conjecture:

Example 1:
Prove that alternate interior angles, formed when a transversal intersects a pair of parallel lines, are equal.

Statement	Justification
$\angle 1=\angle 3$	Vortically opposite
$\angle 1=\angle 2$	Corresponding angles
$\angle 2=\angle 3$	Transitive property

Example 2:
Prove that interior angles on the same side of a transversal, formed when a transversal intersects a pair of parallel lines, are supplementary.

Statement	Justification
$\angle 1=\angle 2$	Coriesponding angles
$\angle 1=\angle 3$	Vertically opposite
$\angle 2+\angle 5=180^{\circ}$	Angles form a
$\angle 1+\angle 5=180^{\circ}$	Straight live
$\angle 3+\angle 5=180^{\circ}$	Transitive property
	Transitive property

Common Errors

It is beneficial to analyze solutions that contain errors, explain why errors might have occurred and how they can be corrected. This reinforces the angle relationships that have been developed throughout this unit.

Example 3:

Identify and correct the error for the following solution:
Determine the measure of x.

$X=\angle D G H$ Vertically angles
Opposite

Statement	Justification
$\angle B F G=45^{\circ}$	given
$\angle B F G=\angle F G D$	

the same side of

the transversal are

equal\end{array}\right]\)| $\angle F G D+\angle F G C=180^{\circ}$ | |
| ---: | :--- |
| $\angle F G C=180^{\circ}-\angle F G D$ | |
| $=180^{\circ}-45^{\circ}$ | supplementary
 angles (angles
 forming a straight
 line) |
| 135° | |

Example 4:

One side of a cellphone tower will be built as shown. Use the angle measures to prove that braces $C G, B F$, and $A E$ are parallel.

Textbook Questions: page 78-82 \#1, 2, 3, 4, 8, 10, 12, 15, 16, 18, 19, 20

