Math 2201

Date:								

2.4 Angle Properties in Polygons

convex polygon

The focus of this chapter, however, will be on convex polygons. We will now discover the relationship between the sum of the interior angles and the number of sides in a convex polygon using the angle sum property. You already know that the sum of the angles in a triangle is 180°.

If we separate each polygon into triangles by drawing diagonals we can then use the following table to make our conjecture. Each vertex of a triangle must be a vertex of the original polygon.

Number of	Diagram	Number of	Sum of
Sides		Triangles	Angles
		Formed	
4		2	360°
5		3	540°
6		4	720°

The focus of this investigation is for you to recognize that the sum of the angles increases by 180° as the number of sides increase by one.

Name	Number of Sides	Number of Triangles in Diagram	Sum if Interior Angles
Triangle	3	l	1800
Quadrilateral	4	2	3600
Pentagon	5	3	540°
Hexagon	6	4	7200
Heptagon	7	5	900°
Octogon	8	\bigcirc	1080°

Make a conjecture about the relationship between the sum of the measures of the interior angles of a polygon, *S*, and the number of sides of the polygon, *n*.

 $Z = 180(\sqrt{-5})$

Example 1:

Determine the sum of the measures of the interior angles of a regular 15 sided figure.

N = 15S = 180(n-2)S = (80(15-2))S = ?S = 180(13)S = 23400

Example 2:

The sum of the interior angles in a regular polygon is 1980°. Determine the number of sides in the figure.

S = 180(n-2)>= 1980° $\frac{1980^{\circ}}{180^{\circ}} = \frac{180^{\circ}(n-2)}{180^{\circ}}$ N = (111- N-2 11+2=n N=13

Example 3:

In baseball, the home plate is shaped like the one shown. It has 3 right angles and 2 other congruent angles (A and B). Find the measures of $\angle A$ and $\angle B$.

Regular Polygons

For a regular polygon, where all sides equal, all angles will be equal.

Example 4:

(A) Determine the sum of the interior angles in an 18 sided regular polygon.

$$S = 38800$$

$$S = 180(18-2)$$

$$N = 180$$

$$S = 180(16)$$

$$S = 180(16)$$

(B) Determine the measure of each individual interior angle in this polygon.

$$\frac{2880^{2}}{18} = 160^{2}$$

Textbook Questions: page 99 - 100 #1, 2, 3, 6, 7a