Math 2201

D .						
Date						
Date	_					
	_					

4.2 Adding and Subtracting Radicals

Recall from Section 4.1A, radicals:

Radicals with the same index and radicand are called **Like Radicals**.

Like Radicals $5\sqrt{7}$ and $-2\sqrt{7}$	Unlike Radicals $2\sqrt{5}$ and $5\sqrt{3}$			
$5\sqrt[3]{4}$ and $\sqrt[3]{4}$	$\sqrt[4]{5}$ and $\sqrt[5]{5}$			

When adding and subtracting radicals, only like radicals can be combined. A good way to think about it, is to treat radicals like variables. For example:

$$4x + 3x = 7 \times$$
$$4\sqrt{5} + 3\sqrt{5} = 75$$

Unlike radicals cannot be added or subtracted. Think:

Suplest
$$4x + 3y = 4 \times + 3\gamma$$

for $4\sqrt{5} + 3\sqrt{6} = 4.55 + 3.6$

Example 1:

Simplify where possible:

(A)
$$5\sqrt{2} + 3\sqrt{2} = 852$$

= $(5+3)52$
= 852

(B)
$$6\sqrt{5} - 4\sqrt{5} = 255$$

= $(6-4)55$
= 255

$$(D) \quad -4\sqrt{2x} - 2\sqrt{2x} \subset -6\sqrt{2} \times$$

(E)
$$3\sqrt{2} + \sqrt[3]{2}$$

already in simplest forms.

(F)
$$4\sqrt{x} + 2\sqrt{x} - 7\sqrt{x} = -\sqrt{x}$$

(E)
$$2\sqrt{2xy} + 4\sqrt{2xy} - 7\sqrt{2xy} = -\sqrt{2xy}$$

(F)
$$3\sqrt{2} + 4\sqrt{5} - 6\sqrt{2} + 5\sqrt{5}$$

= $3\sqrt{2} - 6\sqrt{2} + 4\sqrt{5} + 5\sqrt{5}$
= $-3\sqrt{2} + 4\sqrt{5} + 5\sqrt{5}$
= $-3\sqrt{2} + 4\sqrt{5}$

(G)
$$-5\sqrt{2} + 3\sqrt{7y} + 8\sqrt{2} + 3\sqrt{5} - 2\sqrt{7y}$$

= $3\sqrt{2} + \sqrt{7y} + 3\sqrt{5}$

$$(4) \quad 6\sqrt{2} - 3\sqrt[3]{2} + 11\sqrt{2} + 4\sqrt[3]{2}$$
$$= 1752 + 352$$

Sometimes like radicals can be hidden. By simplifying each radical to lowest terms, mixed radicals, we can then see which are like and which are unlike.

Example 2:

Simplify each radical expressions:

Simplify each radical expressions: (A) $2\sqrt{27} - 4\sqrt{3} - \sqrt{12}$ = 653 - 453 - 253 = 053	() 2727 2013 2037 673	Q 4J3	(3) - 512 = -5453 = -253
(B) $2\sqrt{24} - 4\sqrt{96} + \sqrt{432}$ = $4\sqrt{5} - 16\sqrt{5} + 12\sqrt{5}$ = $-12\sqrt{5} + 12\sqrt{5}$	0 254 27756 2.256 456	3-456 -4565 -4565 -4:40 -160	3 J432 I = J 194-J 3 JG = 12J 3 JG
(C) $2\sqrt{18} + 9\sqrt{7} - \sqrt{63}$ = 652 + 957 - 357 = 652 + 657	D 2JIS (2JIJ 2.3J2 6J2	D957 (3) - J63 - J9J7 = - 3J7

Example 3:

The voltage *V* required for a circuit is given by $V = \sqrt{PR}$ where *P* is the power in watts and *R* is the resistance in ohms. How many more volts are needed to light a 100-W bulb than a 75-W bulb if the resistance for both is 100 ohms? Express your answer in exact value.

Example 4:

Determine the difference in length between each pair of sides.

Example 5:

Identify and correct the error in the following solution:

$$25\sqrt{5} + 13\sqrt{5}$$

= $38\sqrt{10}$ cm; stake
> = $38\sqrt{5}$

Textbook Questions: page 188 - 190 #1, 2, 4, 5, 6, 7, 9, 11, 12, 14, 15, 16, 18, 19