\qquad

4.2 Adding and Subtracting Radicals

Recall from Section 4.1A, radicals:

Radicals with the same index and radicand are called Like Radicals.

Like Radicals
 $5 \sqrt{7}$ and $-2 \sqrt{7}$

$5 \sqrt[3]{4}$ and $\sqrt[3]{4}$

Unlike Radicals
$2 \sqrt{5}$ and $5 \sqrt{3}$
$\sqrt[4]{5}$ and $\sqrt[5]{5}$

When adding and subtracting radicals, only like radicals can be combined. A good way to think about it, is to treat radicals like variables. For example:

$$
\begin{gathered}
4 x+3 x=7 x \\
4 \sqrt{5}+3 \sqrt{5}=7 \sqrt{5}
\end{gathered}
$$

Unlike radicals cannot be added or subtracted. Think:

Example 1:
Simplify where possible:
(A) $5 \sqrt{2}+3 \sqrt{2}=8 \sqrt{2}$

$$
\begin{aligned}
& =(5+3) \sqrt{2} \\
& =8 \sqrt{2}
\end{aligned}
$$

(B)
(C) $5 \sqrt{3}+3 \sqrt{2}$ alrealy in simplest form.
(E) $3 \sqrt{2}+\sqrt[3]{2}$
alredy in simplost forms.
(E) $2 \sqrt{2 x y}+4 \sqrt{2 x y}-7 \sqrt{2 x y}=-\sqrt{2 x y}$

$$
\text { (F) } \begin{aligned}
& 3 \sqrt{2}+4 \sqrt{5}-6 \sqrt{2}+5 \sqrt{5} \\
= & 3 \sqrt{2}-6 \sqrt{2}+4 \sqrt{5}+5 \sqrt{5} \\
= & -3 \sqrt{2}+9 \sqrt{5}
\end{aligned}
$$

(G) $-5 \sqrt{2}+3 \sqrt{7 y}+8 \sqrt{2}+3 \sqrt{5}-2 \sqrt{7 y}$

$$
=3 \sqrt{2}+\sqrt{7} y+3 \sqrt{5}
$$

(d)

$$
\begin{aligned}
& 6 \sqrt{2}-3 \sqrt[3]{2}+11 \sqrt{2}+4 \sqrt[3]{2} \\
& =17 \sqrt{2}+\sqrt[3]{2}
\end{aligned}
$$

Sometimes like radicals can be hidden. By simplifying each radical to lowest terms, mixed radicals, we can then see which are like and which are unlike.

Example 2:
Simplify each radical expressions:
(1) (2) (3)

$$
\text { (A) } \begin{aligned}
& 2 \sqrt{27}-4 \sqrt{3}-\sqrt{12} \\
= & 6 \sqrt{3}-4 \sqrt{3}-2 \sqrt{3} \\
= & 0 \sqrt{3} \\
= & 0
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{(1)}{(2)}(3) \\
\text { (B) } & \frac{2 \sqrt{24}-4 \sqrt{96}+\sqrt{432}}{}=4 \sqrt{6}-16 \sqrt{6}+12 \sqrt{3} \\
= & -12 \sqrt{6}+12 \sqrt{3}
\end{aligned}
$$

(1) $2 \sqrt{27}$ $2 \sqrt{9} \sqrt{3}$ 2. $3 \sqrt{3}$ $6 \sqrt{3}$
(1) $2 \sqrt{24}$ $2 \sqrt{4} \sqrt{6}$

$$
2 \cdot 2 \sqrt{6}
$$

$$
4 \sqrt{6}
$$

(1) (2) (3)
(C) $2 \sqrt{18}+9 \sqrt{7}-\sqrt{63}$

$$
\begin{aligned}
& =6 \sqrt{2}+9 \sqrt{7}-3 \sqrt{7} \\
& =6 \sqrt{2}+6 \sqrt{7}
\end{aligned}
$$

(1) $2 \sqrt{18}$ $2 \sqrt{9} \sqrt{2}$ $2 \cdot 3 \sqrt{2}$ $6 \sqrt{2}$
(2) $4 \sqrt{3}$
(3) $-\sqrt{12}$

$$
=-\sqrt{4} \sqrt{3}
$$

$$
=-2 \sqrt{3}
$$

(2) $-4 \sqrt{96}$
(3) $\sqrt{432}$
$-4 \sqrt{16} \sqrt{6}=\sqrt{144} \sqrt{3}$
$\begin{array}{r}-4 \cdot 4 \sqrt{6} \\ -16 \sqrt{6}\end{array}=12 \sqrt{3}$

$$
-16 \sqrt{6}
$$

(2) $9 \sqrt{7}$

$$
\text { (3) } \begin{aligned}
&-\sqrt{63} \\
&=-\sqrt{9} \sqrt{7} \\
&=-3 \sqrt{7}
\end{aligned}
$$

Example 3:
The voltage V required for a circuit is given by $V=\sqrt{P R}$ where P is the power in watts and R is the resistance in ohms. How many more volts are needed to light a $100-\mathrm{W}$ bulb than a $85-W$ bulb if the resistance for both is 100 ohms? Express your answer in exact value.
(1)

$$
\begin{aligned}
& v=\sqrt{P R} \\
& V=\sqrt{100(100)} \\
& V=\sqrt{100^{2}} \\
& V=100 \mathrm{ollts} \\
& 100-50 \sqrt{3} \text { more } \\
& \text { (a) } \\
& V=\sqrt{2 R} \\
& V=\sqrt{75(100)} \\
& \begin{array}{c}
7500 \\
/
\end{array} \\
& V=\sqrt{2^{2} \cdot 5^{A \cdot} \cdot 5^{2} \cdot 3} \\
& V=2.5 .5 \sqrt{3} \\
& v=50 \sqrt{3} \text { volts } \\
& \text { volts are needed. }
\end{aligned}
$$

Example 4:
Determine the difference in length between each pair of sides.
(A) $\quad P S$ and $S R$

$$
\begin{aligned}
& 10 \sqrt{8}-\sqrt{50} \\
= & 10 \sqrt{4} \sqrt{2}-\sqrt{25} \sqrt{2} \\
= & 102 \sqrt{2}-5 \sqrt{2} \\
= & 20 \sqrt{2}-5 \sqrt{2} \\
= & 15 \sqrt{2}
\end{aligned}
$$

(B) $\quad R Q$ and $P Q$

$$
\begin{aligned}
& 10 \sqrt{45}-29 \sqrt{5} \\
= & 10 \sqrt{9} \sqrt{5}-29 \sqrt{5} \\
= & 10.3 \sqrt{5}-29 \sqrt{5} \\
= & 30 \sqrt{5}-29 \sqrt{5} \\
= & \sqrt{5}
\end{aligned}
$$

Example 5:

Identify and correct the error in the following solution:

$$
\left\{\begin{array}{l}
25 \sqrt{5}+13 \sqrt{5} \\
=38 \sqrt{10} \leftarrow \text { mistake } \\
=38 \sqrt{5}
\end{array}\right.
$$

