4.3A Multiplying Radicals

When multiplying radicals, multiply the coefficients and multiply the radicands. You can only multiply radicals if they have the same index. However, unlike adding and subtracting, you can multiply and divide radicals with a different radicand.

Multiplying Radicals
In general, $(c \sqrt{a})(d \sqrt{b})=c d \sqrt{a b}$, where $a \geq 0$ and $b \geq 0$.
Example 1:
Multiply:
(A) $\sqrt{3} \cdot \sqrt{2}$

$$
\begin{aligned}
& =\sqrt{3 \cdot 2} \\
& =\sqrt{6}
\end{aligned}
$$

(C) $-\sqrt{6} \cdot \sqrt{3}$

$$
\begin{aligned}
&-\sqrt{6} \cdot \sqrt{3} \\
&=-\sqrt{6 \cdot 3} \\
&=-\sqrt{18} \\
&=-\sqrt{9} \sqrt{2}
\end{aligned} \quad 3=-3 \sqrt{2}
$$

(E) $2 \sqrt{3} \cdot 4 \sqrt{5}$
$=(2.4) \sqrt{3 \cdot 5}$
$=8 \sqrt{15}$
(G) $4 \sqrt{3} \cdot(-5 \sqrt{9})$

$$
\begin{aligned}
& =4 \sqrt{3}(-5 \cdot 3) \\
& =4 \sqrt{3}(-15) \\
& =4 \cdot(-15) \sqrt{3} \\
& =-60 \sqrt{3}
\end{aligned}
$$

(B) $\sqrt{5} \cdot \sqrt{7}$

$$
\begin{aligned}
& =\sqrt{5.7} \\
& =\sqrt{35}
\end{aligned}
$$

(D) $\quad(-\sqrt{2})(-\sqrt{7})$

$$
\begin{aligned}
& =(-1)(-1) \sqrt{27} \\
& =\sqrt{14}
\end{aligned}
$$

(F) $\quad-5 \sqrt{5} \cdot 6 \sqrt{2}$

$$
\begin{aligned}
& =(-5 \cdot 6) \sqrt{5 \cdot 2} \\
& =-30 \sqrt{10}
\end{aligned}
$$

(H) $\quad(-10 \sqrt{6})(-2 \sqrt{5})$

$$
\begin{aligned}
& =(-10)(-2) \sqrt{6.5} \\
& =20 \sqrt{30}
\end{aligned}
$$

You are less likely to make simplification errors if you simplify radicals before multiplying. For example:

$$
\sqrt{80} \times \sqrt{12}
$$

Multiply First:

$$
\begin{aligned}
& =\sqrt{80 \cdot 12} \\
& =\sqrt{960} \\
& =\sqrt{64} \sqrt{15} \\
& =8 \sqrt{15}
\end{aligned}
$$

Which method do you prefer?

Simplify first:

$$
\begin{aligned}
& =\sqrt{16} \sqrt{5} \times \sqrt{4} \sqrt{3} \\
& =4 \sqrt{5} \times 2 \sqrt{3} \\
& =(4.2) \sqrt{5.3} \\
& =8 \sqrt{15}
\end{aligned}
$$

What happens when the radicand is the same in each expression. Consider the example: * A radical multiplied
by itself is the
radicand.

$$
\left.\begin{array}{rl}
& 7 \sqrt{2} \times 3 \sqrt{2} \\
= & (7.3) \sqrt{2.2} \\
= & 21 \sqrt{4}
\end{array}\right]=421 \cdot 2
$$

Were you surprised that the answer was 42 ? Why is the product of two identical radical expressions an integer even though each factor is an irrational number?

Example 2:
Multiply and simplify:
(A) $\sqrt{3} \cdot \sqrt{12}$

(C) $\sqrt{9} \cdot \sqrt{8}$
$=3 \sqrt{4} \sqrt{2}$
$=3 \cdot 2 \sqrt{2}$
$=6 \sqrt{2}$
(B) $\sqrt{48} \cdot \sqrt{16}$

$$
\begin{aligned}
& \sqrt{48} \cdot \sqrt{16} \\
= & \sqrt{16} \sqrt{3} \cdot \sqrt{16} \text { or } \sqrt{16} \sqrt{3} \sqrt{16} \\
= & 16 \sqrt{3}
\end{aligned}=4 \sqrt{3} \cdot 4
$$

(D) $2 \sqrt{9} \cdot 3 \sqrt{9}$

$$
\begin{aligned}
& =(2.3)(9) \\
& =54
\end{aligned}
$$

The Distributive Property

Recall Math 1201 and multiplying polynomials. For example:
i.

$$
\begin{aligned}
& 3 x(x+2) \\
= & 3 x^{2}+6 x
\end{aligned}
$$

ii.

$$
(3 x+4)(x-7)
$$

(1) $3 x(x-7)+4(x-7)$
$=3 x^{2}-21 x+4 x-28$
$=3 x^{2}-17 x-28$
(2) $\begin{gathered}\text { Lest } \\ (3 x+4)(x-7)\end{gathered}$
$=3 x^{2}-21 x+4 x-28$
$=3 x^{2}-17 x-28$

We can use the same techniques when multiplying radicals as well.
Example 3:
Express in simplest form
(A) $4 \sqrt{2}(7 \sqrt{5}+\sqrt{3})$

$$
\begin{aligned}
& =(4 \sqrt{2})(7 \sqrt{5})+(4 \sqrt{3})(\sqrt{3}) \\
& =(4.7) \sqrt{2.5}+4 \sqrt{23} \\
& =28 \sqrt{10}+4 \sqrt{6}
\end{aligned}
$$

(B)

$$
\begin{aligned}
& 2 \sqrt{3} \sqrt{12-\sqrt{7}}=\sqrt{4} \sqrt{3} \\
= & 2 \sqrt{3}(2 \sqrt{3}-\sqrt{7}) \\
= & (2 \cdot 2)(3)-2 \sqrt{3} \\
= & 4 \cdot 3-2 \sqrt{21} \\
= & 12-2 \sqrt{21}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (D) }(8 \sqrt{2}-5)(9 \sqrt{5}+6 \sqrt{10}) \\
& \text { (E) }(\sqrt{2}+\sqrt{6})^{2} \\
& =(8 \sqrt{2})(9 \sqrt{5})+(8 \sqrt{2})(6 \sqrt{10})-5(9 \sqrt{5})-5(6 \sqrt{10}) \\
& =(\sqrt{2}+\sqrt{6})(\sqrt{2}+\sqrt{6}) \\
& =(8 \cdot 9) \sqrt{2 \cdot 5}+(8.6) \sqrt{2.10}-45 \sqrt{5}-30 \sqrt{10} \\
& =72 \sqrt{10}+48 \sqrt{20}-45 \sqrt{5}-30 \sqrt{10} \\
& \begin{array}{l}
=42 \sqrt{10}-45 \sqrt{5}+48 \sqrt{20} \\
=42 \sqrt{10}-45 \sqrt{5}+48(2 \sqrt{5}) \\
=42 \sqrt{10}-45 \sqrt{5}+96 \sqrt{5}
\end{array} \\
& \sqrt{20}=2+2 \sqrt{12}+6 \\
& =2+\sqrt{12}+\sqrt{12}+6 \\
& =42 \sqrt{10}-45 \sqrt{5}+96 \sqrt{5} \\
& =42 \sqrt{10}+51 \sqrt{5} \\
& \begin{array}{l}
=\sqrt{4} \sqrt{5}=2+2(2 \sqrt{3})+ \\
=2 \sqrt{5}=8+4 \sqrt{3}
\end{array}
\end{aligned}
$$

(F) $(3 \sqrt{8}-4)(2+7 \sqrt{3}) \quad \sqrt{8}$
$\begin{aligned} & (6 \sqrt{2}-4)(2+7 \sqrt{3})=\sqrt{4}=2 \sqrt{2} \\ & 12 \sqrt{2}+42 \sqrt{6} 8=2 \sqrt{3}\end{aligned}$
(F)
$=12 \sqrt{2}+42 \sqrt{6}-8-28 \sqrt{3}$
(G) $\quad(\sqrt{20}+\sqrt{24})(3 \sqrt{12}-5 \sqrt{32}) \mid \sqrt{20} \quad \sqrt{24}$
$\begin{aligned} & =(2 \sqrt{5}+2 \sqrt{6})(6 \sqrt{3}-20 \sqrt{2})=\sqrt{4} \sqrt{5}=\sqrt{4} \sqrt{6} \\ & =12 \sqrt{15}-40 \sqrt{10}+12 \sqrt{18}=2 \sqrt{6}\end{aligned}$
$=12 \sqrt{15}-40 \sqrt{10}+12 \sqrt{18}-40 \sqrt{12}$
$=\sqrt{9} \sqrt{2}$
$-3 \sqrt{2}$

Example 4:
Express $(\sqrt{3}-\sqrt{2})^{2}$ in simplest form.
(A) 1
(B) $5-2 \sqrt{6}$
(C) $1-2 \sqrt{3}$
(D) 5

$$
\begin{aligned}
& (\sqrt{3}-\sqrt{2})(\sqrt{3}-\sqrt{2}) \\
= & 3-\sqrt{6}+\sqrt{6}+2 \\
= & 5-2 \sqrt{6}
\end{aligned}
$$

Explain your reasoning:
A radical mult.plied by itself is the rulticuld.
Example 5:
Identify any errors and provide the correct solutions:

$$
\begin{aligned}
& \text { (1) }(2 \sqrt{3})(4 \sqrt{5})=8+2 \sqrt{5+}+\sqrt{3}+\sqrt{15} \\
& =8 \sqrt{15}
\end{aligned}
$$

Student poppied distributive property.
 $(2 \sqrt{3}+5 \sqrt{2})(2 \sqrt{3}+5 \sqrt{2})$ property.

$$
\begin{aligned}
& (2 \sqrt{3}+5 \sqrt{2})(2 \sqrt{3}+5 \sqrt{2}) \quad \text { proper } \\
= & 4(3)+10 \sqrt{6}+10 \sqrt{6}+25(2) \quad[\quad=62+2 \sqrt{6} \\
= & 12+20 \sqrt{6}+50
\end{aligned}
$$

(iii) $2-5 \sqrt{7}(3+4 \sqrt{7})=(2-5 \sqrt[5]{8}<(3+4 \sqrt{7}) \quad$ Put brackets a round first $=2-15 \sqrt{7}-20(7) \quad$ "binomial".
$=2-15 \sqrt{7}-140$

$$
=-138-15 \sqrt{7}
$$

Example 6:
The radius of a circle is $3 \sqrt{5} \mathrm{~m}$. If a square is inscribed in a circle:
(A) Determine the exact length of the diagonal of the square.
(1) $d=3 \sqrt{5}+3 \sqrt{5}=6 \sqrt{5} \mathrm{~m}$
or
(2) $d=2(3 \sqrt{5})=6 \sqrt{5} \mathrm{~m}$

(B) Determine the exact perimeter of the square.

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& \begin{array}{l}
a+b=c^{2} \\
s^{2}+s^{2}=(6 \sqrt{5})^{2}
\end{array} \\
& 2 s^{2}=36(5) \\
& \partial s^{2}=180 \quad \text { Perinetr: } 4(3 \sqrt{10 m}) \\
& \sqrt{S^{2}}=\sqrt{90} \\
& S=\sqrt{9} \sqrt{10} \\
& S=3 \sqrt{10} \mathrm{~m}
\end{aligned}
$$

Example 7:
Given the right triangular prism:

$$
\begin{aligned}
& \text { (A) Determine the volume. } \\
& \begin{array}{l}
\text { (A) Determine the volume. } \\
\begin{aligned}
A_{B} & =\frac{1}{2} b \cdot h= \\
& =6 \sqrt{21}
\end{aligned} \quad \frac{(253)(657)}{2}
\end{array} \\
& \begin{aligned}
& V=(6 \sqrt{21})(9 \sqrt{14})=54 \sqrt{2944} \\
& \\
& \text { (B) Determine the surface area. } \\
&=54(7 \sqrt{6}) \\
&=378 \sqrt{3})
\end{aligned} \\
& 6 \sqrt{7} \frac{\square}{2 \sqrt{3}}=2 \sqrt{66} \\
& a^{2}+b^{2}=c^{2} \\
& (6 \sqrt{7})^{2}+(2 \sqrt{3})^{2}=c^{2} \\
& 36(7)+4(3)=c^{2} \\
& \sqrt{264}=\sqrt{2} \\
& c=\sqrt{4} \sqrt{66} \\
& c=2.56 \\
& S A=36 \sqrt{231}+18 \sqrt{42}+378 \sqrt{2}+6 \sqrt{21} \\
& A=0 \cdot \omega=(6 \sqrt{7})(9 \sqrt{14}) \\
& =54 \sqrt{98} \\
& \begin{array}{l}
=54 \sqrt{49} \sqrt{2} \\
=375 \sqrt{2}
\end{array} \\
& =378 \sqrt{2} \\
& \begin{aligned}
A=l \cdot w & =(2 \sqrt{3})(9 \sqrt{14}) \\
& =(8 \sqrt{42}
\end{aligned} \\
& =18 \sqrt{42} \\
& \begin{aligned}
A=l \cdot w & =(2 \sqrt{66})(9 \sqrt{14}) \\
& =18 \sqrt{924}
\end{aligned} \\
& =18 \sqrt{4} \sqrt{231} \\
& =36 \sqrt{231} \\
& 2 \sqrt{66} \square_{9 \sqrt{14}}
\end{aligned}
$$

