2

4.3A Multiplying Radicals

When multiplying radicals, multiply the coefficients and multiply the radicands. You can only multiply radicals if they have the same index. However, unlike adding and subtracting, you can multiply and divide radicals with a different radicand.

Multiplying Radicals

In general, $(c\sqrt{a})(d\sqrt{b}) = cd\sqrt{ab}$, where $a \ge 0$ and $b \ge 0$.

Example 1:

Multiply:

$(A) \sqrt{3} \cdot \sqrt{2} \\ = \sqrt{3} \cdot 2 \\ = \sqrt{6}$	$(B) \sqrt{5} \cdot \sqrt{7} \\ = \sqrt{5 \cdot 7} \\ = \sqrt{35}$
$ \begin{array}{ccc} (C) & -\sqrt{6} \cdot \sqrt{3} \\ = -\sqrt{6} \cdot \sqrt{6} \cdot \sqrt{6} \\ = -\sqrt{6} \cdot \sqrt{6} \\ = -\sqrt{6} \cdot \sqrt{6} \\ = -\sqrt{6} \cdot \sqrt{6} \\ = $	(D) $(-\sqrt{2})(-\sqrt{7})$ = $(-1)(-1)\sqrt{2}$ = $\sqrt{14}$
(E) $2\sqrt{3} \cdot 4\sqrt{5}$ = $(2 \cdot 4) \overline{3 \cdot 5}$ = $8 \sqrt{15}$	$(F) -5\sqrt{5} \cdot 6\sqrt{2}$ $= (-5 \cdot 6)\sqrt{5 \cdot 6}$ $= -30\sqrt{6}$
(G) $4\sqrt{3} \cdot (-5\sqrt{9})$ = $4\sqrt{3}(-5\cdot3)$ = $4\sqrt{3}(-15)$ = $4\cdot(-15)\sqrt{3}$	 (H) (-10√6)(-2√5) = (-10)(-2)) ⇒ 20)
= -6073	

You are less likely to make simplification errors if you simplify radicals before multiplying. For example:

What happens when the radicand is the same in each expression. Consider the example:

Were you surprised that the answer was 42? Why is the product of two identical radical expressions an integer even though each factor is an irrational number?

Example 2:

Multiply and simplify:

= JI6J3 JI6 or JI6J3JI6 = 16J3 = 4J3 4 - 16J3 $\sqrt{3} \cdot \sqrt{12}$ (B) $\sqrt{48} \cdot \sqrt{16}$ (A) 5.5453 5.25= - 2.5.5 - 2.55 (C) $\sqrt{9} \cdot \sqrt{8}$ $2\sqrt{9} \cdot 3\sqrt{9}$ (D) = 3.14.12 $=(2\cdot3)(9)$ = 3.25- 54 = 6,5

The Distributive Property

Recall Math 1201 and multiplying polynomials. For example:

We can use the same techniques when multiplying radicals as well.

Example 3:

Express in simplest form (A) $4\sqrt{2}(7\sqrt{5} + \sqrt{3})$ $= (4\sqrt{5})(7\sqrt{5} + \sqrt{3})$ (B) $2\sqrt{3}(\sqrt{12} - \sqrt{7})$ $= \sqrt{12}$ $= \sqrt{12}$

(D)
$$(8\sqrt{2}-5)(9\sqrt{5}+6\sqrt{10})$$

= $(8\sqrt{2})(9\sqrt{5}+6\sqrt{10}) - S(9\sqrt{5}) - S(6\sqrt{5}) - S(6\sqrt{5})$
= $(\sqrt{2}+\sqrt{6})^{2}$
= $(\sqrt{2}+\sqrt{6})^{2}$
= $(\sqrt{2}+\sqrt{6})(\sqrt{2}+\sqrt{6})$
= $(\sqrt{2}+\sqrt{6})^{2}$
= $($

Example 4:

Express
$$(\sqrt{3} - \sqrt{2})^2$$
 in simplest form. $(53 - 52)(53 - 52)$
(A) 1
(B) $5 - 2\sqrt{6}$
(C) $1 - 2\sqrt{3}$
(D) 5
 $= 5 - 2\sqrt{6}$

A radical multiplied by itself is the radicanel. Explain your reasoning:

Example 5:

Identify any errors and provide the correct solutions:

(ii)
$$(2\sqrt{3}+5\sqrt{2})^2 = 4\sqrt{0}+25\sqrt{4}$$
 Did not use distributive
 $(2\sqrt{3}+5\sqrt{2})(2\sqrt{3}+5\sqrt{2})$ property:
 $= 4(3)+10\sqrt{6}+10\sqrt{6}+25(2)$ $= 62+23\sqrt{6}$
 $= 12+20\sqrt{6}+50$
(iii) $2-5\sqrt{7}(3+4\sqrt{7})=(2-5\sqrt{6}(3+4\sqrt{7}))$ Put brackets around first
 $= 2-15\sqrt{7}-20(7)$
 $= 2-15\sqrt{7}-140$
 $= -138-15\sqrt{7}$

Example 6:

The radius of a circle is $3\sqrt{5}$ m. If a square is inscribed in a circle:

(A) Determine the exact length of the diagonal of the square.

 $(D) d = 3\sqrt{5} + 3\sqrt{5} = 6\sqrt{5} m$

(B) Determine the exact perimeter of the square.

a2+b2=(2 2°+8°=(655) $2S^{2} = 36(5)$ S23- 180 5= 72%

Perimetr: 4 (3510m) = 12510m

Example 7:

Given the right triangular prism: (A) Determine the volume. (J33)/6)7 $A_R = \frac{1}{2} b \cdot h =$ = 6,521 9√14 1/=(6521)(9,14)=54(756) (B) Determine the surface area. = 37816 c = 2566 657 A=Q.w=(6)7)(9)14) 6)7 954 = 54 JA8 $a^{2}+b^{2}=c^{2}$ $(925)_{5} + (522)_{5} = c_{5}$ - 54 548 52 ट्री = 37552 $36(7) + 4(3) = c^{2}$ 14 A = l.w = (253)(954) (264=k? = (8,42 $C = \sqrt{4} Shb$ 2566 A= l·w = (2566) (9514) = 185924 (= 256h =1854 5231 SA= 36, 531 + 18, F2+ 378, 5+ 6, 61 = 36 (23)

Textbook Questions: page 198 - 199 #1, 4, 5, 6, 7, 8, 9, 10, 11, 20a