# **4.3B Dividing Radicals**

#### **Dividing Radicals**

When dividing radicals, divide the coefficients and then divide the radicands. You can only divide radicals that have the same index.

In general,  $\frac{c\sqrt{a}}{d\sqrt{b}} = \frac{c}{d} \cdot \sqrt{\frac{a}{b}}$ , *a*, *b*, *c*, and *d* are real numbers.  $n \neq 0$  and  $b \neq 0$ . If the index is even, then  $a \ge 0$  and b > 0.

**Example 1:** 



## **Rationalizing the Denominator**

It's considered bad form to leave a radical in the denominator of a fraction. There are two methods we use to remedy this, depending on the type of expression that is in the denominator.

A monomial denominator can simply be multiplied by 1 in the form of that denominator over itself:  $\frac{5}{\sqrt{3}} \int \frac{5}{\sqrt{3}}$ 

= 553





Example 3:

$$(A) \frac{2\sqrt{3}}{\sqrt{5}} \cdot \sqrt{5}$$
$$= 2\sqrt{5}$$

5

$$(B) \sqrt{\frac{12}{5}} \qquad (B) \sqrt{\frac{12$$

$$(C) \quad \frac{2\sqrt{3}}{7\sqrt{5}} \cdot \sqrt{5}$$
$$= 2\sqrt{5}$$
$$= 2\sqrt{5}$$
$$= \sqrt{5}$$
$$= \sqrt{5}$$
$$= \sqrt{5}$$
$$= \sqrt{5}$$

(D) 
$$\frac{6\sqrt{48}}{3\sqrt{6}}$$
  
=  $2\sqrt{8}$   
=  $2\sqrt{4}$   
=  $4\sqrt{2}$ 

#### **Expressions With Multiple Operations**

Some expressions may have addition or subtraction in the numerator or denominator. When possible work these operations before you divide.

### Example 3:

Simplify:

$$(A) \quad \frac{3\sqrt{6}+5\sqrt{6}}{4\sqrt{2}}$$
$$= \frac{8}{4\sqrt{2}}$$
$$= \frac{8}{4\sqrt{2}}$$
$$= 2\sqrt{3}$$

(B) 
$$\frac{4\sqrt{12}-10\sqrt{6}}{2\sqrt{3}}$$
  
=  $\frac{4\sqrt{12}-10\sqrt{6}}{2\sqrt{3}}$   
=  $\frac{4\sqrt{12}-10\sqrt{6}}{2\sqrt{3}}$ 

Textbook Questions: page 198 - 200 #2, 3, 12, 13, 16, 20, 21