\qquad

4.3B Dividing Radicals

Dividing Radicals

When dividing radicals, divide the coefficients and then divide the radicands. You can only divide radicals that have the same index.

In general, $\frac{c \sqrt{a}}{d \sqrt{b}}=\frac{c}{d} \cdot \sqrt{\frac{a}{b}}, a, b, c$, and d are real numbers. $n \neq 0$ and $b \neq 0$. If the index is even, then $a \geq 0$ and $b>0$.

Example 1:

(A) $\sqrt{\frac{25}{4}}$
(B) $\frac{\sqrt{12}}{\sqrt{6}}$
$=\sqrt{25}$

$$
=\sqrt{2}
$$

(C) $\frac{4 \sqrt{6}}{2 \sqrt{3}}$
(D) $\frac{6 \sqrt{48}}{3 \sqrt{6}}$
$=2 \sqrt{2}$
$=2 \sqrt{8}$
$=2 \sqrt{4} \sqrt{2}$
$=2 \cdot 2 \sqrt{2}$
$=4 \sqrt{2}$

Rationalizing the Denominator
It's considered bad form to leave a radical in the denominator of a fraction. There are two methods we use to remedy this, depending on the type of expression that is in the denominator.

A monomial denominator can simply be multiplied by 1 in the form of that denominator over itself:

Recall:
$\frac{5}{5}=1, \frac{\sqrt{3}}{\sqrt{3}}=1$
S.125, 3.1: 3

$$
\begin{aligned}
& \frac{5}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \\
= & 5 \sqrt{3}
\end{aligned}
$$

Example 3:
(A) $\frac{2 \sqrt{3}}{\sqrt{5}} \cdot \sqrt{5}$
$=\frac{2 \sqrt{15}}{5}$
(C) $\frac{2 \sqrt{3}}{7 \sqrt{5}} \cdot \sqrt{5}$
$=\frac{2 \sqrt{15}}{7.5}$
$=\frac{2 \sqrt{15}}{35}$

Expressions With Multiple Operations

Some expressions may have addition or subtraction in the numerator or denominator. When possible work these operations before you divide.

Example 3:

Simplify:
(A) $\frac{3 \sqrt{6}+5 \sqrt{6}}{4 \sqrt{2}}$

$$
\begin{aligned}
& =\frac{8 \sqrt{6}}{4 \sqrt{2}} \\
& =2 \sqrt{3}
\end{aligned}
$$

(B) $\frac{4 \sqrt{12}-10 \sqrt{6}}{2 \sqrt{3}}$
$=\frac{4 \sqrt{12}}{2 \sqrt{3}}-\frac{10 \sqrt{6}}{2 \sqrt{3}}$
$=2 \sqrt{4}-5 \sqrt{2}$
$=2.2-5 \sqrt{2}$
$=4-5 \sqrt{2}$

