\qquad

4.4B Radicals Containing Variables

Some radicals can contain variables. In Mathematics 1201, students expressed a radical as a power with rational exponents. The focus here will be exclusive to the square root of a radical with variable radicands, for example, $\sqrt{x^{n}}=x^{\frac{n}{2}}$.

Simplifying Algebraic Expressions Involving Radicals

\sqrt{x} cannot be simplified, since x is the smallest possible variable radicand. However, other powers of x under a root sign can be simplified.

Example 1:

Simplify the following.
(A) $\sqrt[3]{x^{2}}$
(B) $\sqrt{x^{3}}$
(C) $\sqrt{x^{4}}$
$=x$
$=\sqrt{(x \cdot x)(x \cdot x)}$
$=\sqrt{x^{2} \cdot x^{2}}$
$=\sqrt{x^{2}} \sqrt{x / 2}$
$=x \cdot x$
$=x^{2}$

Example 2:
Complete the table:

	Greatest Perfect Square	Prime Factorization
$\sqrt{125}$	$\sqrt{25 \times 5}=5 \sqrt{5}$	$\sqrt{5 \times 5 \times 5}=5 \sqrt{5}$
$\sqrt{x^{3}}$	$\sqrt{x^{2} \times x}=x \sqrt{x}$	$\sqrt{x \times x) \times x}=x \sqrt{x}$
$\sqrt{x^{4}}$	$\sqrt{x^{2} \times x^{2}}=x \times x=x^{2}$	$\sqrt{x \times x \times x \times x}=x \times x=x^{2}$
$\sqrt{x^{5}}$	$\sqrt{x^{2} \cdot x^{2} \cdot x}=x \cdot x \sqrt{x}=x^{2} \sqrt{x} \sqrt{x \times \times \times \times \cdot}=x \cdot x \sqrt{x}=x^{2} \sqrt{x}$	
$\sqrt{x^{6}}$	$\sqrt{x^{2} \cdot x^{2} \cdot x^{2}}=x \cdot x \cdot x=x^{3}$	$\sqrt{x \cdot x \cdot x}=x \cdot x \cdot x=x^{3}$

When the radical consists of a radicand that contains a variable and a numerical coefficient, simply split the radical into two separate radicals. For example:

Example 3:
Simplify the following and state any restrictions:

(A)

$$
\begin{aligned}
& =\sqrt{4} \sqrt{x x} \\
& =2 x, x \in R
\end{aligned}
$$

$$
\begin{aligned}
& \text { (C) } \sqrt{54 x^{5}} \\
& =\sqrt{54} \sqrt{x^{5}} \\
& =\sqrt{9} \sqrt{6} \sqrt{* * * x} \\
& =3 \sqrt{6} x \cdot x \sqrt{x} \\
& =3 x^{2} \sqrt{6 x}, x \geq 0
\end{aligned}
$$

Textbook Questions: page 211 \#2

$$
\text { (B) } \begin{aligned}
& 4 \sqrt[{4 \sqrt{18 x^{3}}}]{=} \\
= & 4 \sqrt{18} \sqrt{x^{3}} \\
= & 4 \sqrt{9} \sqrt{2} \sqrt{x * x} \\
= & 12 x \sqrt{2 x} \sqrt{x}, x \geq 0
\end{aligned}
$$

(D) $-7 y^{2} \sqrt{8 y^{5}}$
$=-7 y^{2} \sqrt{8} \sqrt{y^{5}}$

(F) $\sqrt{y-5}$

$$
\begin{gathered}
\begin{array}{l}
y-5 \\
\text { simpers foin } \\
y-5 \geq 0 \\
y \geq 5
\end{array} \\
=1
\end{gathered}
$$

