$\qquad$

### 5.5B Z-Scores

## Z-Scores

Z-Scores can be used to compare two or more sets of data.

## Defining ZScores

For any data point $(x)$ in a set that is normally distributed, we can determine how many standard deviations $(\sigma)$ the data point is from the mean value $(\mu)$ :

$$
\mu+z \sigma=x
$$

The number of standard deviations that a data point is located away from the mean is called the z-score ( $z$ ).

We can rearrange the previous equation to solve for the z -score $(z)$ :

$$
\mu+z \sigma=x
$$



Example 1:
Hailey runs a 200 m sprint at two locations: in Vancouver and at Lake Louise. The data is given in the table below:

| Location | Club Mean <br> Time: $\boldsymbol{\mu}$ <br> for 200 m <br> (s) | Club <br> Standard <br> Deviation: <br> $\boldsymbol{\sigma}(\mathbf{s})$ | Hailey's <br> Run Time <br> (s) |
| :---: | :---: | :---: | :---: |
| Vancouver | 25.75 | 0.62 | 24.95 |
| Lake Louise | 25.57 | 0.60 | 24.77 |

Determine the location at which her run time was better, when compared to the club results.


$$
\mu=25.75
$$

$$
a=0.62
$$

$$
x=24.95
$$

$$
z=7
$$



$$
z=-1.2 q
$$

What do the z-scores actually mean?


The z-scores show us how many standard deviations each running time is away from the mean value.

Important Note Recall that the data we are looking at is run time for a race. In a race, lower run times are considered the best, since they indicate that a race was completed in a shorter period of time the runner was faster. Therefore, the best run time will be the lower time.
Which run time was best? LaKe Lou. Se

## Using Z-Scores to Determine the Percent of Data Less Than a Given Value.

Once you calculate a z-score, you can use it to determine the percentage of data that would fall below the given data point, for example, to the left of the data point, on a standard normal curve.

We can determine the percentage of data that would lie in the shaded region on the graph shown.


Z-score
We do this by looking up our z-score value in the z -score table on pages $580-581$ in our textbook.

$$
\begin{aligned}
& \text { textbook. } 8880 \times 100=89.8 \% \text {. If your } z \text {-score } \\
& 0 \text {. } 8980 \text { a test is } 1.27 \text {, then you scored higher } \\
& \text { then } 87.8 \% \text { of pere in your class. } \\
& \text { then }
\end{aligned}
$$

## Example 2:

IQ tests are sometimes used to measure a person's intellectual capacity at a particular time. IQ scores are normally distributed, with a mean of 100 and a standard deviation of 15 . If a person scores 119 on an IQ test, how does this score compare with the scores of the general population?

Calculate the z-score:


$$
\begin{aligned}
& z=\frac{x-\mu}{\sigma} \\
& z=\frac{119-100}{15}
\end{aligned}
$$

$$
z=1.27
$$

A z-score of 1.27 means that an IQ of 119 is 1.27 standard deviations above the mean, as shown below:


How do we find the percentage of data below the given data point, $\mathrm{IQ}=119$ ? Use a z-score table in this case, we are looking up a z-score of 1.27
last digit in our number
$z$-score table
A table that displays the fraction of data with a $z$-score that is less than any given data value in a standard normal distribution.
(There is a $z$-score table on pages 580 to 581 .)

1st two digits in our number

Example 3:


Sally has a height of 1.75 m and lives in a city where the average height is 1.60 m and the standard deviation is 0.20 m . Leah is 1.80 m and lives in a city where the average height is 1.70 m and the standard deviation is 0.15 m . Identify which of the two is considered to be taller compared to their fellow citizens. Explain your reasoning.


Example 4:
On her first math test, Susan scored $70 \%$. The mean class score was $65 \%$ with a standard deviation of $4 \%$. On her second test she received $76 \%$. The mean class score was $73 \%$ with a standard deviation of $10 \%$. On which test did Susan perform better with respect to the rest of her class?

$$
\text { Test } 1
$$

$$
\text { Test } 2
$$

$$
\begin{aligned}
x=0.7 \quad z & =\frac{x-\mu}{\sigma} \\
\mu=0.65 \quad & =\frac{0.7-0.65}{0.04} \\
\sigma=0.04 & =1.25
\end{aligned}
$$

Example 5:
It is known that the mean value of repairs, due to an accident, for both cars is $\$ 3500$. The standard deviation for the Corvette is $\$ 1200$, while the standard deviation for the Civic is only $\$ 800$. If the cost of repairs is normally distributed, determine the probability that the repairs costs will be over $\$ 5000$ for both cars.

Covet e

$$
\begin{array}{ll}
x=5000 & z=\frac{x-\mu}{\sigma} \\
\mu=3500 & z=\frac{5000-3500}{1200}
\end{array}
$$

$$
z=1.25
$$

From table: 0.8944

$$
1-0.9699=0.031
$$

$$
1-0.8944=0.1056=
$$



$$
\begin{aligned}
& x=5000 \quad z \\
& \mu=3500=\frac{5000-3500}{800} \\
& \sigma=800 \\
& z=1.88 \\
& \text { From z.teble: } 0.9699
\end{aligned}
$$

$$
\begin{aligned}
& \text { or } 3.1 \% \\
& \text { Themes a } 3.1 \% \\
& \text { chance the repairs cost } \\
& \text { over } \$ 5000 \text {. }
\end{aligned}
$$

that the r Pairs cost over $\$ 5000$.

Example 6:
A manufacturuer produces tires that have an average thickness of 179 mm , with a standard deviation of 0.9 mm . To be classified as "supreme quality", tires must have a thickness between 177.8 mm and 180.7 mm . What percent, to the nearest whole number, of the total production can be rated as "supreme quality" tires? * two x-values

$$
\begin{array}{rlrl}
x=177.8 & z & =\frac{x-\mu}{\sigma} & x=180.7 \quad z \\
\mu=179 & =\frac{180.7-177}{0.9} \\
\sigma=0.9 & =\frac{177.8-179}{0.9} & & =1.89 \\
& =-1.33
\end{array} \quad \text { From table: } 0.9706
$$

Example 7:
A manufacture of personal music players has determined that the mean life of the players is 32.4 months, with a standard deviation of 6.3 months. What length of warranty should be offered if the manufacturuer wants to restrict repairs to less than $1.5 \%$ of all players sold?

$$
\begin{array}{rl}
\mu=32.4 & \quad \text { Percentage }: 1.5 \% \text { or } 0.015 \\
\sigma=6.3 & \quad z=-2.17 \\
x=? & z=\frac{x-\mu}{\sigma} \\
z=? & \\
& \frac{-2.17}{1}=\frac{x-32.4}{14} \\
& x-32.4=(-2.17)(6.3) \\
& x-32.4=-13.671 \\
& x=-13.671+32.4 \\
& x=18.729 \\
& \text { Warranty should be } 18-19 \text { months. }
\end{array}
$$

SUMMARY
Need to Know

- A z-score indicates the number of standard deviations that a data value lies from the mean. It is calculated using this formula:

$$
z=\frac{x-\mu}{\sigma}
$$

- A positive $z$-score indicates that the data value lies above the mean. A negative $z$-score indicates that the data value lies below the mean.
- The area under the standard normal curve, to the left of a particular $z$-score, can be found in a $z$-score table or determined using a graphing calculator.

