Date:_____

5.5B Z-Scores

Z-Scores

Z-Scores can be used to compare two or more sets of data.

Defining ZScores

For any data point (*x*) in a set that is normally distributed, we can determine how many standard deviations (σ) the data point is from the mean value (μ):

$$\mu + z\sigma = x$$

The number of standard deviations that a data point is located away from the mean is called the **z-score** (z).

We can rearrange the previous equation to solve for the z-score (*z*):

Example 1:

Hailey runs a 200 m sprint at two locations: in Vancouver and at Lake Louise. The data is given in the table below:

Location	Club Mean Time: µ for 200 m (s)	Club Standard Deviation: σ (s)	Hailey's Run Time (s)
Vancouver	25.75	0.62	24.95
Lake Louise	25.57	0.60	24.77

Determine the location at which her run time was better, when compared to the club results.

What do the z-scores actually mean?

The z-scores show us how many standard deviations each running time is away from the mean value.

Important Note Recall that the data we are looking at is run time for a race. In a race, lower run times are considered the best, since they indicate that a race was completed in a shorter period of time the runner was faster. Therefore, the best run time will be the lower time.

Which run time was best? Lake Lou.se

Using Z-Scores to Determine the Percent of Data Less Than a Given Value.

Once you calculate a z-score, you can use it to determine the percentage of data that would fall below the given data point, for example, to the left of the data point, on a standard normal curve.

We do this by looking up our z-score value in the z-score table on pages 580 – 581 in our textbook.

0.8280 × 100 = 89.8%. If your Z-score on a test is 1.27, then you scored highen than 89.8% of people in your class.

Example 2:

IQ tests are sometimes used to measure a person's intellectual capacity at a particular time. IQ scores are normally distributed, with a mean of 100 and a standard deviation of 15. If a person scores 119 on an IQ test, how does this score compare with the scores of the general population?

Calculate the z-score:

A z-score of 1.27 means that an IQ of 119 is 1.27 standard deviations above the mean, as shown below:

How do we find the percentage of data below the given data point, IQ = 119? Use a **z-score** table in this case, we are looking up a z-score of 1.27

Example 3:

Sally has a height of 1.75 m and lives in a city where the average height is 1.60 m and the standard deviation is 0.20 m. Leah is 1.80 m and lives in a city where the average height is 1.70 m and the standard deviation is 0.15 m. Identify which of the two is considered to be taller compared to their fellow citizens. Explain your reasoning.

Sally	Lean
×-125	X=18 Z=1.8-1.7
$\sqrt{-1.1}$ $z = \chi^{-1} \chi^{-1}$	M = 1.7 0.15
M21.6 T	r = 0.15 = 0.17
m=0.2 ==1.+5-1.6	
0.2	ſ
Z=0.75	t (om Z-Lbb: 0,7486
Fromztable: 0.773	or 74.869
or 77.3%	Sally is faller compared
/ 0	to her fellow citizens.

Example 4:

On her first math test, Susan scored 70%. The mean class score was 65% with a standard deviation of 4%. On her second test she received 76%. The mean class score was 73% with a standard deviation of 10%. On which test did Susan perform better with respect to the rost of her class?

Test a X = 0.76 = 0.76 - 0.73 M = 0.73 = 0.1 $\sigma = 0.1 = 0.3$

Example 5:

It is known that the mean value of repairs, due to an accident, for both cars is \$3500. The standard deviation for the Corvette is \$1200, while the standard deviation for the Civic is only \$800. If the cost of repairs is normally distributed, determine the probability that the repairs costs will be over \$5000 for both cars.

CisiC Corvetle Z = 5000-3500 800 X=5000 X= 5000 Z=X-M M=3560 M=3500 J= 400 7=188 0=1200 Z=500-3500 From Z- Jeble: 0.9699 2=1.25 1-0.9699=0.031 From table: 0.8944 1- 0.89.44= D.1056 063.10/ There's a 3.1% or 10.56% change the repairs cost There's a 10.56% probability over \$500. that the ropairs cost over \$5770.

Example 6:

A manufacturuer produces tires that have an average thickness of 179 mm, with a standard deviation of 0.9 mm. To be classified as "supreme quality", tires must have a thickness between 177.8 mm and 180.7 mm. What percent, to the nearest whole number, of the total production can be rated as "supreme quality" tires? $\star + \omega \circ \times - \omega < |u| < S$

Example 7:

A manufacture of personal music players has determined that the mean life of the players is 32.4 months, with a standard deviation of 6.3 months. What length of warranty should be offered if the manufacturuer wants to restrict repairs to less than 1.5% of all players sold?

SUMMARY

Need to Know

• A *z*-score indicates the number of standard deviations that a data value lies from the mean. It is calculated using this formula:

$$z=\frac{x-\mu}{\sigma}$$

- A positive *z*-score indicates that the data value lies above the mean. A negative *z*-score indicates that the data value lies below the mean.
- The area under the standard normal curve, to the left of a particular *z*-score, can be found in a *z*-score table or determined using a graphing calculator.

Textbook Questions: page 292, 293 #1, 5, 6, 7, 8, 10, 11