\qquad
6.3 Factored Form of a Quadratic Function

Example 1:
Using technology, graph the following functions and determine the x-intercepts. Then answer the following questions.
i. $\quad y=x^{2}-6 x+9 \quad \neg /=(x-3)(x-3)$

$$
\begin{gathered}
9 \\
1,9 \\
3,3
\end{gathered}
$$

ii. $\quad y=2 x^{2}-4 x-6$
iii. $\quad y=(x-2)(x+3)$
iv. $\quad y=(x+1)(x-4)$
(A) Can you determine the x-intercepts by looking at a quadratic function? Explain.
Yes, if the function is in fartoreal form.
(B) Which form of the quadratic function did you find the easiest to use when determining the x-intercepts?
factored form.
(C) What is the connection between the factors and the x-intercepts?

(D) What is the value of the y-coordinate at the point where the graph crosses the x-axis?

$$
\text { The } y \text {-coordinate is } 0 \text { where }
$$

$$
\text { crosses the } x \text {-axis. }
$$

(E) What would happen if the factors of the quadratic function were identical?

(F) How can you find the x-intercepts of a quadratic function without the graph or a table of values?

Factored Form

The factored form of a quadratic is:

$$
f(x)=a(x-r)(x-s) \quad \text { or } \quad y=a(x-r)(x-s)
$$

where a, r, and s are real numbers and $a \neq 0$.

Factored form can be obtained by factoring standard form. For example:

$$
\begin{aligned}
& y=2\left(x^{2}+7(x)=2 x^{2}+14 x+12\right. \\
& V=2(x+6) \quad \frac{6}{1,6} \\
& V=2,3
\end{aligned}
$$

There are a number of properties that can be read from factored form.
Direction of Opening: as with standard form, the a value gives the direction of opening and indicates whether the parabola will have a maximum or a minimum point.

Zeros: these are the value of the variable x that make the function $f(x)$ equal to zero.
These correspond to the x-intercepts on a graph.
zeros $=x$-intercepts $=$ roots
y-intercept: obtained by setting x equal to zero and solving for $f(x)$.
Axis of Symmetry: obtained by taking the average of the x-intercepts/zeros.
Vertex: x-value is the same as the axis of symmetry. y-value of obtained by substituting the x-value into the equation and solving for y.

Domain and Range: can be determined once we know the vertex and direction of opening.
Example 1:
For the function given below in factored form, find:
\therefore therefor

$$
f(x)=2(x+1)(x+6)
$$

(A) Direction of opening:

$$
a>0, \therefore \text { opens up }
$$

(B) Zeros

$$
(-1,0),(-6,0)
$$

(C) y-intercept

$$
y=2(0+1)(0+6)=2(1)(6)=12 \quad(0,2)
$$

(D) Axis of symmetry

$$
\frac{-1+(-6)}{2}=-\frac{7}{2}
$$

(E) Vertex

$$
\begin{aligned}
& y=2(-3.5+1)(-3.5+6)=2(-2.5)(2.5)=-12.5 \\
& \text { vertex: }(-3.5,-12.5)
\end{aligned}
$$

(F) Domain and Range

$$
\text { Domain: }\{x \mid x \in R\} \text {, hang: }\{y \mid y \geq-1.5, y \in R\}
$$

(G)

Example 2:
-12
For the function given below ind find:

$$
\begin{array}{ll}
f(x)=x^{2}+2 x-8 & \frac{8}{1,8} \\
f(x)=(x-2)(x+4) & 2,4
\end{array}
$$

(A) Direction of opening:

$$
a>1 \text {, opens up }
$$

(B) Zeros

$$
(2,0),(-4,0)
$$

(C) y-intercept

$$
(0,-8)
$$

(D) axis of symmetry

$$
\frac{2+(-4)}{2}=-\frac{2}{2}=-1 \quad x=-1
$$

(E) vertex

$$
\begin{aligned}
y= & (-1-2)(-1+4)=(-3)(3)=-9 \\
& \text { vertex: }(-1,-9)
\end{aligned}
$$

(F) Domain and Range

Domain: $\{x \mid x \in R\}$
(G) Sketch the parabola: \quad Range $\{y \mid y \leq-\{, y \in R\}$

Example 3:
Determine the quadratic function with factors $(x+3)$ and $(x-5)$ and a y-intercept of -5 .

$$
\begin{aligned}
& y=a(x-r)(x-5) \quad * \text { * } \\
& y=a(x+3)(x-5) \\
&-5=a(0+3)(0-5) \\
&-5=a(3)(-5) \\
&-5=-15 a
\end{aligned} \quad\left[\begin{array}{l}
a=\frac{1}{3} \quad\left(\begin{array}{l}
\text { Find }
\end{array}\right. \\
\text { Function: } \\
y=\frac{1}{3}(x+3)(x-5)
\end{array}\right.
$$

$$
\frac{-5}{-15}=\frac{-15 a}{-15}
$$

Example 4:
Ask students to answer the following questions:
(A) Using technology, what are the zeros of $f(x)=2 x^{2}+5 x-7$?

$$
(-3.5,0),(1,0)
$$

(B) What are the x-intercepts of the graph?
X-inf:
(C) What do you notice about the answers to the above questions?
The numbers are the sane.

Example 5:
(A) Determine the function that defines this parabola in factored form.

$$
\begin{aligned}
& y=a(x-r)(x-s) \\
& y=a(x+1)(x-4) \\
& 12=a(0+1)(0-4) \\
& 12=a(1)(-4) \\
& 12=\frac{-4 a}{-4} \\
& \frac{-4}{-4}
\end{aligned}
$$

$a=-3 \quad$ function: $y=-3(x+1)(x-4)$
(B) Write the function in standard form. F $\cup \backslash$

$$
\begin{aligned}
& y=-3(x+1)(x-4) \\
& y=-3\left(x^{2}-4 x+1 x-4\right) \\
& y=-3\left(\hat{x}^{2}-3 x-4\right) \\
& y=-3 x^{2}+9 x+12
\end{aligned}
$$

Example 6:
A quadratic function has x-intercepts at $x=2$ and $x=3$, and it passes through the point $(1,8)$.

$$
x-2 \quad x-3
$$

(A) Write the equation of the quadratic function in factored form.

$$
\begin{array}{ll}
y=a(x-r)(x-5) \\
y=a(x-2)(x-3) & \text { Function: } \\
8=a(1-2)(1-3) & y=4(x-2)(x-3) \\
8=a(-1)(-2) \\
8=\frac{2 a}{2} \\
\frac{8}{2} \\
a=4
\end{array}
$$

(B) Write the equation of the quadratic function in standard form.

$$
\begin{aligned}
& y=4(x-2)(x-3) \\
& y=4\left(x^{2}-3 x-2 x+6\right) \\
& y=4\left(x^{2}-5 x+6\right) \\
& y=4 x^{2}-20 x+24
\end{aligned}
$$

Example 7:
Answer the following questions about quadratic functions:
(A) Are two x-intercepts enough information to sketch a unique graph? Explain.
No. You need the vertex
as well.
(B) Is the vertex enough information to sketch a unique graph? Explain.

$$
\begin{aligned}
& \text { No. You need to have the } x \text {-intercepts } \\
& \text { as well. The y-intercept helps, but is } \\
& \text { not necessany. }
\end{aligned}
$$

(C) What are the minimum requirements to sketch a unique quadratic graph? Explain.

$$
x \text {-intercepts and the vertex. }
$$

Textbook Questions: page 346-348, \#1, 2, 3, 4 a,d,e, 11, 12

