D	a	te):							
				_					_	-

6.3 Factored Form of a Quadratic Function

Example 1:

Using technology, graph the following functions and determine the *x*-intercepts. Then answer the following questions.

- ii. $y = 2x^2 4x 6$
- iii. y = (x 2)(x + 3)
- iv. y = (x+1)(x-4)
- (A) Can you determine the x-intercepts by looking at a quadratic function? Explain. Yes, if the function is in factored form.
- (B) Which form of the quadratic function did you find the easiest to use when determining the *x*-intercepts?

- (C) What is the connection between the factors and the x-intercepts? The factors have the opposite sign of the X-intercepts.
- (D) What is the value of the y-coordinate at the point where the graph crosses the x-axis? The y-coordinate is O where the graph (rosses the x-axis.

- (E) What would happen if the factors of the quadratic function were identical? We get a single root at the opposite number of the factor. This single soot is also the vertex.
- (F) How can you find the *x*-intercepts of a quadratic function without the graph or a table of values?

Factored Form

The factored form of a quadratic is:

$$f(x) = a(x - r)(x - s)$$
 or $y = a(x - r)(x - s)$

where *a*, *r*, and *s* are real numbers and $a \neq 0$.

Factored form can be obtained by factoring standard form. For example:

$$f(x) = 2x^{2} + 14x + 12$$

$$\int = 2(\chi^{2} + 7 \times + 6) \frac{6}{1, 6}$$

$$\int = 2(\chi + 1)(\chi + 6) \frac{2}{3}$$

There are a number of properties that can be read from factored form.

Direction of Opening: as with standard form, the *a* value gives the direction of opening and indicates whether the parabola will have a maximum or a minimum point.

Zeros: these are the value of the variable x that make the function f(x) equal to zero. These correspond to the x-intercepts on a graph.

*y***-intercept:** obtained by setting x equal to zero and solving for f(x).

Axis of Symmetry: obtained by taking the average of the *x*-intercepts/zeros.

Vertex: *x*-value is the same as the axis of symmetry. *y*-value of obtained by substituting the *x*-value into the equation and solving for *y*.

Domain and Range: can be determined once we know the vertex and direction of opening.

Example 1:

For the function given below in factored form, find:

$$f(x) = 2(x+1)(x+6)$$

(A) Direction of opening: A > O, , opens up f

(B) Zeros
$$(-|0\rangle) (-(0))$$

(C) y-intercept

$$\gamma = 2(0+i)(0+i) = 2(i)(i) = 12$$
 (0,12)

(D) Axis of symmetry

$$\frac{-(+(-6))}{2} = -\frac{1}{2} \text{ or } -\frac{3}{5} \times = -\frac{3}{5}$$
(E) Vertex

$$\frac{-2(-3.5+i)(-3.5+6)}{-2(-3.5)(-$$

Example 4:

Ask students to answer the following questions:

(A) Using technology, what are the zeros of $f(x) = 2x^2 + 5x - 7$?

$$(-3.5,0),(1,0)$$

(B) What are the *x*-intercepts of the graph?

(C) What do you notice about the answers to the above questions?

The numbers are the same.

Example 5:

(A) Determine the function that defines this parabola in factored form.

Example 6:

A quadratic function has *x*-intercepts at x = 2 and x = 3, and it passes through the point (1,8). \swarrow

(A) Write the equation of the quadratic function in factored form.

$$y = q(x-r)(x-s)$$

$$y = q(x-a)(x-s) \quad \text{Function:}$$

$$8 = q(1-a)(1-3) \quad y = 4(x-a)(x-s)$$

$$8 = q(-1)(-2)$$

$$8 = a(-1)(-2)$$

$$6 = a(x-a) \quad x = a(x-a)(x-s)$$

(B) Write the equation of the quadratic function in standard form.

Y = 4 (x-2)(x-3) $Y = 4 (x^{2}-3x-2x+6)$ $Y = 4 (x^{2}-5x+6)$ $Y = 4x^{2}-20x+24$

Example 7:

Answer the following questions about quadratic functions:

(A) Are two *x*-intercepts enough information to sketch a unique graph? Explain.

(B) Is the vertex enough information to sketch a unique graph? Explain.

(C) What are the minimum requirements to sketch a unique quadratic graph? Explain.

X-intercepts and the vertex.