\qquad
7.2 Solving Quadratic Equations by Factoring

Once a quadratic equation has been factored, students will use the zero product property to determine the roots. For example, $5 x^{2}+14 x-3=0$ in factored form is:

$$
(5 x-1)(x+3)=0
$$

this means either $5 x-1=0$ or $x+3=0$.
Solving each factor we get:

$$
\begin{array}{ll}
5 x-1=0 & x+3=0 \\
\frac{5 x}{5}=\frac{1}{5} & x=-3 \\
x=1 / 5 & (-3,0) \\
\left(\frac{1}{5}, 0\right) &
\end{array}
$$

Example 1:
The factors of the equation $x^{2}+5 x+6=0$ are $(x+2)(x+3)$. Use the zero product property to find the roots.

$$
x+3=0
$$

$$
(-2,0)
$$

Review of Factoring

$$
y=a x^{2}+b x+c
$$

Type I Trinomial: $x^{2}+b x+c$

$$
a=1
$$

We simply need two numbers that multiply to give us c and add to give us b. We usually refer to this as the Product/Sum method.

$$
\begin{array}{lr}
(x-2)(x+3)=x^{2}+x-6=0 & \frac{6}{1,6} \\
x-2=0, x+3=0 \\
x=2, x=-3 & (2,0),(-3,0)
\end{array}
$$

What relationship did you notice between the factored form of a quadratic equations and its roots? They have opposite signs.

Example 2:
Factor each quadratic equation:
(A)

$$
\begin{aligned}
& x^{2}+7 x+12=0 \\
& (x+3)(x+4)=0 \\
& x+3=0, x+4=0 \\
& x=-3, x, 6 \\
& (-3,0),(-4,0)
\end{aligned}
$$

(B) $x^{2}+3 x-10=0$

$$
\begin{aligned}
& (x-2)(x+5)=0 \\
& x-2=0, x+5=0 \\
& x=2, x=-5 \\
& (2,0),(-5,0)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { (C) } x^{2}-4 x+21=0 \quad \frac{21}{1,21} \\
(x+3)(x-7)=0,3,7
\end{array} \\
& x+3=0, x-7=0 \\
& x=-3, x=7 \\
& (-3,0),(7,0)
\end{aligned}
$$

(D) $x^{2}-8 x+12=0$

$$
(x-2)(x-6)=0
$$

$$
x-2=0, x-6=0
$$

$$
x=2, \quad x=6
$$

Type II Trinomial: $a x^{2}+b x+c$
We typically use decomposition to factor this type of quadratic. The process involves multiplying $a \cdot c$ and choosing two factors of this product that can be added to make b.

Factor each Type II Trinomial using decomposition:

$$
\begin{aligned}
& \text { (A) } 5 x^{2}+14 x-3=0 \\
& \left(5 x^{2}-x\right)(+15 x-3)=0 \\
& (x)(5 x-1)(+3)(5 x-1)=0 \\
& (5 x-1)(x+3)=0 \\
& 5 x-1=0,1 x+3=0 \\
& 5 x=1 \quad 1 x=-3 \\
& x=\frac{1}{5} \quad(-3,0) \\
& \left(\frac{1}{5}, 0\right)^{3} \quad(-5,0
\end{aligned}
$$

(C)

$$
\begin{array}{ll}
\text { (C) } & 90 \\
\left(6 x^{2}-10 x-15=0\right. & 90 \\
(6 x-95)=0 & 2,45 \\
2 x(3 x-5)+3(3 x-5)=0 & 5,30 \\
(3 x-5)(2 x+3)=0 & 6,15 \\
3 x-5= & 9,10
\end{array}
$$

$$
3 x-5=0,2 x+3=0
$$

$$
\begin{array}{ll}
3 x=5 & 12 x=-3 \\
x=5 & 1
\end{array}
$$

$$
x=\frac{5}{3}, \quad, x=-\frac{3}{2}
$$

$$
\left(\frac{5}{3}, 0\right),\left(-\frac{3}{2}, 0\right)
$$

(B) $\quad \sqrt{2 x^{2}-5 x-3}=0$
$\left(2 x^{2}-6 x\right)(+x-3)=0^{2,3}$

$$
2 x(x-3)+1(x-3)=0
$$

$$
(x-3)(2 x+1)=0
$$

$$
x-3=0,2 x+1=0
$$

$$
x=3
$$

$(3,0)$
$12 x=-1$

$$
x=-\frac{1}{2}
$$

$$
\left(-\frac{1}{2}(0)\right.
$$

(C)

$$
\begin{aligned}
& \text { (c) } \begin{array}{c}
3 x^{2}-4 x-7=0 \\
3 x^{2}+3 x-7 x-7=0 \\
3 x(x+1)-7(x+1)=0 \\
(x+1)(3 x-7)=0 \\
x+1=0,3 x-7=0 \\
x=-1,13 x=7 \\
x=\frac{7}{1,21} \\
(-1,0),\left(\frac{7}{3}, 0\right)
\end{array}
\end{aligned}
$$

Example 4:
Answer the following:
(A) Find the zeros of $f(x)=2 x^{2}+5 x-7$

$$
\begin{gathered}
2 x^{2}+5 x-7=0 \\
2 x^{2}-2 x+7 x-7=0 \\
2 x(x-1)+7(x-1)=0 \\
(x-1)(2 x+7)=0 \\
x-1=0,2 x+7=0 \\
x=1 \quad 12,74 \\
(1,0) \quad 12 x=-7 \\
\left(\frac{12}{1+7}=-7\right. \\
\left.\frac{7}{2}, 0\right)
\end{gathered}
$$

(B) Identify the x-intercepts of the graph.

$$
\begin{gathered}
(1,0),(-3.5,0) \\
\text { or } \\
\left(-\frac{7}{2}, 0\right)
\end{gathered}
$$

(C) Find the roots of $2 x^{2}+5 x-7=0$.

$$
x=1, x=-\frac{7}{2}
$$

(D) What do you notice about the answers to the above questions?

Difference of Squares:
These are quadratics of the form $a^{2} x^{2}-b^{2}$. If you can recognize this pattern, factoring becomes quite easy.

$$
\begin{gathered}
x^{2}-4=0 \\
(x+2)(x-2)=0 \\
x+2=0, x-2=0 \\
x=-2, \quad x=2 \\
(-2,0),(2,0)
\end{gathered}
$$

Example 5:
Factor each quadratic equation:
(A) $x^{2}-49=0$

$$
\begin{aligned}
& (x+7)(x-7)=0 \\
& x+7=0, x-7=0 \\
& x=-7, x=7 \\
& (-7,0),(7,0)
\end{aligned}
$$

(C) $9 x^{2}-16=0$

$$
\begin{aligned}
& (3 x+4)(3 x-4)=0 \\
& 3 x+4=0,3 x-4=0 \\
& \frac{3 x}{3}=-\frac{4}{3}, \frac{3 x}{3}=\frac{4}{3} \\
& x=-\frac{4}{3}, \quad, x=\frac{4}{3} \\
& \left(-\frac{4}{3}, 0\right),\left(\frac{4}{3}, 0\right)
\end{aligned}
$$

(B) $4 x^{2}-25=0$

$$
\begin{aligned}
& 2 x+5)(2 x-5)=0 \\
& 2 x+5=0,2 x=5=0 \\
& \frac{2 x}{2}=-\frac{5}{2}, \frac{2 x}{2}=\frac{5}{2} \\
& x=-\frac{5}{2}, \frac{x=\frac{5}{2}}{2} \\
& \left(\frac{-5}{2}, 0\right),\left(\frac{5}{2} 10\right)
\end{aligned}
$$

(D) $36 x^{2}-81=0$
$(6 x+9)(6 x-9)=0$
$6 x+h=0,6 x-9=0$
$\frac{6 x}{6}=\frac{-9}{6}, \frac{6 x}{6}=\frac{9}{6}$
$x=-\frac{3}{2}, x=\frac{3}{2}$
$\left(-\frac{3}{2}, 0\right),\left(\frac{3}{2}, 0\right)$

There is an alternate method to solving differences of squares. This is especially useful if a quadratic is a binomial but one term is not a perfect square. This method uses the square root property.

$$
\begin{aligned}
& *(-2)^{2}=4 \\
& \therefore \sqrt{4}=-2 \\
& \text { 个 }
\end{aligned}
$$

Now let's try for a binomial that's not a difference of squares:

$$
\begin{aligned}
& x^{2}-12=0 \\
& x^{2}=12 \\
& \sqrt{x^{2}}=\sqrt{12}
\end{aligned}
$$

$$
x^{2}-12=0
$$

Example 6:
Factor each quadratic equation:
(A)

$$
\begin{aligned}
& x^{2}-6=0 \\
& x^{2}=6 \\
& \sqrt{x^{2}}=\sqrt{6} \\
& x=\sqrt{6} \\
& (\sqrt{6}, 0),(-\sqrt{6},)
\end{aligned}
$$

$$
\begin{aligned}
& (8) x^{2}-8=0 \\
& x^{2}=8 \\
& \sqrt{x^{2}}=\sqrt{8} \\
& x= \pm \sqrt{8} \\
& x= \pm \sqrt{4 \sqrt{2}} \\
& x= \pm 2 \sqrt{2} \\
& (2 \sqrt{2}, 0),(-2 \sqrt{2}, 0)
\end{aligned}
$$

Greatest Common Factor
Sometimes it may be beneficial to factor the GCF out of a quadratic expression first. This is often the method to use when there is a missing b or c term from $a x^{2}+b c+c=0$. It's also important to look for other types of quadratic equations imbedded inside a quadratic that can have the GCF factored first.

$$
\begin{gathered}
x^{2}+5 x=0 \\
x(x+5)=0 \\
x=0, \quad x+5=0 \\
(0,0), \begin{array}{r}
x=-5 \\
(-5,0)
\end{array}
\end{gathered}
$$

Example 7:
Factor each quadratic equation:
(A) $x^{2}-10 x=0$

$$
\begin{gathered}
x(x-10)=0 \\
x=0, x-10=0 \\
x=10 \\
(0,0),(10,0)
\end{gathered}
$$

$$
\begin{aligned}
& \text { (C) } 9 x^{2}-18 x=0 \\
& 9 x(x-2)=0 \\
& \frac{9 x}{9}=\frac{0}{9}, x-2=0 \\
& x=0 \quad \mid x=2 \\
& (0,0),(2,0)
\end{aligned}
$$

(B) $4 x^{2}-8 x=0$

$$
\begin{aligned}
& \left.\frac{4 x}{4}=\frac{0}{4}, \quad x-2\right)=0 \\
& x=0, \quad x=2 \\
& (0,0),(2,0)
\end{aligned}
$$

cubic
(D) $x^{3}-49 x=0$

$x(x+7)(x-7)=0$
$x=0, x+7=0, x-7=0$
$x=-7$
$(0,0),(-7,0),(7,0)$

Solving Quadratic Equations in Non-Standard Form
A quadratic equation may be given in a format which requires simplification to standard form before being able to determine the roots. For example:

$$
\begin{gathered}
2 x^{2}+2 x-12=3 x-6 \\
2 x^{2}+2 x-12-3 x+6=0 \\
2 x^{2}-x-6=0 \\
\left(2 x^{2}-4 x\right)(+3 x-6)=0 \quad \frac{12}{1,12} \\
2 x(x-2)+3(x-2)=0 \\
(x-2)(2 x+3)=0 \\
x-2=0,2 x+3=0 \\
x=2, \frac{2 x=-3}{2}, \frac{2,4}{2} \\
x=-3 / 2
\end{gathered}
$$

Example 8:
Simplify each expression, then factor the resulting quadratic: equation:

$$
\begin{aligned}
& \text { (A) } \begin{array}{c}
2 x^{2}+10 x+2=5(1+3 x) \\
2 x^{2}+10 x+2=5+15 x \\
2 x^{2}+10 x-15 x+2-5=0 \\
2 x^{2}-5 x-3=0 \quad \frac{6}{1,6} \\
2 x^{2}-6 x+x-3=0 \\
2 x(x-3)+(x-3)=0 \\
(x-3)(2 x+1)=0 \\
x-3=0,2 x+1=0 \\
x=3 \\
2 x=-\frac{1}{2} \\
(3,0),\left(-\frac{1}{2}, 0\right)
\end{array} \\
& \begin{array}{c}
x=-\frac{1}{2}
\end{array}
\end{aligned}
$$

(B) $2\left(5+3 x^{2}\right)=7 x^{2}+x-2$

$$
10+6 x^{2}=7 x^{2}+x-2
$$

$$
0=7 x^{2}-6 x^{2}+x-2-10
$$

$$
x^{2}+x-12=0
$$

$$
(x-3)(x+4)=0
$$

$$
\begin{aligned}
& x-3=0, x+4=0 \\
& x-3
\end{aligned}
$$

$$
x=3 \quad 1 x=-4
$$

$$
(3,0),(-4,0)
$$

In the previous unit, you had to determine a unique parabola given the x-intercepts and another point. Now you will write the quadratic equation based only on the x-intercepts. Manipulating the parameter a does not influence the value of the x-intercepts. Therefore, multiple quadratic equations exist. Consider the following equations resulting in x-intercepts -2 and 1 .

Example 9:
Write two different quadratic equations in standard form having roots -3 and 3 .

$$
\begin{gathered}
x=-3, x=3 \\
(x+3)=0,(x-3)=0 \\
y=(x+3)(x-3) \\
y=x^{2}-3 x+3 x-9 \\
y=x^{2}-9
\end{gathered}
$$

Example 10:
Using Desmos, graph $y=a(x-2)(x-8)$ for $a=1,2,3$ and 4 .
(A) What do these parabolas have in common?

(B) Does the same property hold when a is negative? Explain.

pTextbook Questions: page 411-413 \#1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14

