Math 2201

```
Date:_____
```

7.2 Solving Quadratic Equations by Factoring

Once a quadratic equation has been factored, students will use the **zero product property** to determine the roots. For example, $5x^2 + 14x - 3 = 0$ in factored form is:

$$(5x-1)(x+3) = 0$$

this means either 5x - 1 = 0 or x + 3 = 0.

Solving each factor we get:

Example 1:

The factors of the equation $x^2 + 5x + 6 = 0$ are (x + 2)(x + 3). Use the zero product property to find the roots.

Review of Factoring

$$\gamma = ax^3 + bx + c$$

 $a = 1$

Type I Trinomial: $x^2 + bx + c$

We simply need two numbers that multiply to give us *c* and add to give us *b*. We usually refer to this as the **Product/Sum** method.

$$\begin{array}{c} (\chi - 2)(\chi + 3) = \frac{x^2 + x - 6 = 0}{6} \\ \chi - 2 = 0, \chi + 3 = 0 \\ \chi = 2, \chi = -3 \end{array}$$

$$\begin{array}{c} 6 \\ 1, 6 \\ 2, 3 \\ (2, 0), (-3, 0) \end{array}$$

What relationship did you notice between the factored form of a quadratic equations and its roots? They have opposite signs.

Example 2:

Factor each quadratic equation:

(A)
$$x^{2} + 7x + 12 = 0$$

 $(\times + 3)(\times + 4) = 0$
 $\times + 3 = 0, \times + 4 = 0$
 $\times - -3, \times + 4 = 0$
 $(-3, 0), (-4, 0)$

(B)
$$x^{2} + 3x - 10 = 0$$

 $(\chi - \partial)(\chi + 5) = 0$
 $\chi - \partial = 0, \chi + 5 = 0$
 $\chi = 2, \chi = -5$
 $(2, 0), (-5, 0)$

(C)
$$x^{2}-4x+21=0$$

 $(X+3)(X-7)=0$
 $X+3=0$, $X-7=0$
 $X=-3$, $X=7$
 $(-3,0)$, $(7,0)$

(D)
$$x^2 - 8x + 12 = 0$$

 $(x - 2) (x - 6) = 0$
 $x - 2 = 0$
 $x - 6 = 0$
 $x - 4$
 $x = 2$
 $x = 6$

Type II Trinomial: $ax^2 + bx + c$

We typically use **decomposition** to factor this type of quadratic. The process involves multiplying $a \cdot c$ and choosing two factors of this product that can be added to make *b*.

$$2x^{2} - 9x - 5 = 0$$

$$(2x^{2} - 10x)(+x - 5) = 0$$

$$(2x^{2} - 10x)(+x - 5) = 0$$

$$(x - 5)(2x + 1) = 0$$

$$(x - 5)(2x + 1) = 0$$

$$x - 5 = 0, 2x + 1 = 0$$

$$x = 5, 2x + 1 = 0$$

$$2x^{2} - -1$$

$$2x^{2} - -1$$

$$(5, 0)$$

$$x = -1/2$$

$$(-1 = 0)$$

Example 3:

Factor each Type II Trinomial using decomposition:

 $5x^2 + 14x - 3 = 0$ (A) $(5x^2 - x)(+15x - 3) = 0^{-3}$ $(5x^2 - x)(+3)(5x - 1) = 0$ 1.15 $(5 \times -1)^{2}$ (x+3)=0 $5 \times -(=3) \times t = 3$ $5 \times = 1$ $\chi = 1$ $\chi = -3$ (-3, 0)

(B)
$$2x^2 - 5x - 3 = 0$$

 $(2x^2 - 6x)(+x - 3) = 5^{2}, 5^{2}$
 $2x(x - 3) + 1(x - 3) = 5^{2}$
 $(x - 3)(2x + 1) = 5^{2}$
 $(x -$

(C)
$$6x^{2} - x - 15 = 0$$
 90
 $(6x^{2} - 10x(t - 9x - 15) = 0$ 2,45
 $2x(3x - 5) + 3(3x - 5) = 0$ 5,18
 $(3x - 5)(2x + 3) = 0$ 6,15
 $3x - 5 = 0$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3 = 0$
 $3x = 5$, $2x + 3$, $2x + 3$
 $3x = 5$, $2x + 3$, $2x + 3$, $2x + 3$
 $3x = 5$, $2x + 3$, 2

(c)
$$3x^2 - 4x - 7 = 0$$

 $3x^2 + 3x - 7x - 7 = 0$
 $3x(x + 1) - 7(x + 1) = 0$
 $(x + 1)(3x - 7) = 0$
 $x + 1 = 0$
 $x + 1 = 0$
 $x - 7 = 0$
 $x = 7$
 $(-1,0)_{1}(7,0)_{2}$

Example 4:

Answer the following:

(A) Find the zeros of
$$f(x) = 2x^2 + 5x - 7$$

 $2x^2 + 5x - 7 = 0$
 $2x^2 - 2x + 7x - 7 = 0$
 $2x(x - 1) + 7(x - 1) = 0$
 $(x - 1)(2x + 7) = 0$
 $x - 1 = 0$
 $(x - 1)(2x + 7) = 0$
 $x - 1 = 0$
 $(x - 1)(2x + 7) = 0$
 $(x - 1)(2x$

(D) What do you notice about the answers to the above questions?

The numbers are the same.

Difference of Squares:

These are quadratics of the form $a^2x^2 - b^2$. If you can recognize this pattern, factoring becomes quite easy.

$$x^{2}-4=0$$

$$(X+2)(X-2)=0$$

$$X+2=0$$

$$X-2=0$$

$$X=-2$$

$$1 \times = 0$$

$$(-2, 0)$$

$$(2, 0)$$

Example 5: Factor each quadratic equation:

(A)
$$x^2 - 49 = 0$$

 $(x + 7)(x - 7) = 5$
 $x + 7 = 5$
 $x - 7 = 5$
 $(-7, 5)$, $(7, 5)$

(3x + 4)(3x - 4) = 2

3x+4=0 ,3x-4=0

X= 4

4

(C) $9x^2 - 16 = 0$

 $\frac{3x=-4}{3}$ $x=-\frac{4}{3}$ $(-\frac{4}{3})$ (4)

(B)
$$4x^{2} - 25 = 0$$

 $(2x+5)(9x-5) = 0$
 $2x+5 = 0, 2x-5 = 0$
 $2x = -5, 3x = 5, 5x = -5, 5x = -5,$

There is an alternate method to solving differences of squares. This is especially useful if a quadratic is a binomial but one term is not a perfect square. This method uses the square root property.

Example 6: Factor each quadratic equation:

 $x^2 - 8 = 0$ (B) X'2 = 8 $\Xi(\&$ $X = + / \Sigma$ $X = \pm H_{1}(2)$ $X = \pm a fa$ (252,0),(-252,0)

X= + 14,53

 $X = \pm 2/2$

Greatest Common Factor

Sometimes it may be beneficial to factor the GCF out of a quadratic expression first. This is often the method to use when there is a missing *b* or *c* term from $ax^2 + bc + c = 0$. It's also important to look for other types of quadratic equations imbedded inside a quadratic that can have the GCF factored first.

Example 7:

Factor each quadratic equation:

(A)
$$x^{2} - 10x = 0$$

 $(A) x^{2} - 10x = 0$
 $(A) x^{2} - 49 = 0$
 $(A$

Solving Quadratic Equations in Non-Standard Form

A quadratic equation may be given in a format which requires simplification to standard form before being able to determine the roots. For example:

$$2x^{2} + 2x - 12 = 3(x - 2)$$

$$Q = 2x^{2} + 2x - 12 = 3x - 6$$

$$Q = 2x^{2} + 2x - 12 - 3x + 6 = 0$$

$$Q = 2x^{2} - x - 6 = 0$$

$$Q = 2x^{2} - x - 6 = 0$$

$$Q = 2x^{2} - (x - 2) + 3(x - 2) = 0$$

$$Q = 2x^{2} + 3(x - 2) = 0$$

$$Q = 2x^{2} + 3 = 0$$

$$X = 2 + 3 = 0$$

$$X = -3/2$$

$$Q = -3/2$$

$$Q = -3/2$$

Example 8:

Simplify each expression, then factor the resulting quadratic: equation:

(A)
$$2x^{2} + 10x + 2 = 5(1 + 3x)$$

 $3x^{2} + 10x + 2 = 5 + 15x$
 $2x^{2} + 10x - 15x + 2 - 5 = 0$
 $2x^{2} - 5x - 3 = 0$
 $3x^{2} - 6x + x - 3 = 0$
 $3x^{2} - 6x + x - 3 = 0$
 $3x^{2} - 6x + x - 3 = 0$
 $3x^{2} - 6x + x - 3 = 0$
 $3x^{2} - 6x + x - 3 = 0$
 $3x^{2} - 6x + x - 3 = 0$
 $3x^{2} - 6x + x - 3 = 0$
 $3x^{2} - 6x + x - 3 = 0$
 $3x^{2} - 6x + x - 3 = 0$
 $3x^{2} - 6x + x - 3 = 0$
 $3x^{2} - 6x + x - 3 = 0$
 $3x^{2} - 6x + x - 3 = 0$
 $3x^{2} - 6x + x - 3 = 0$
 $3x^{2} - 6x + x - 3 = 0$
 $3x^{2} - 6x + x - 3 = 0$
 $3x^{2} - 6x + x - 3 = 0$
 $3x^{2} - 6x + x - 3 = 0$
 $3x^{2} - 6x + x - 3 = 0$
 $3x^{2} - 6x + x - 3 = 0$
 $3x^{2} - 6x + x - 3 = 0$
 $3x^{2} - 6x + x - 3 = 0$
 $3x^{2} - 6x + x - 3 = 0$
 $3x^{2} - 6x + x - 3 = 0$
 $3x^{2} - 6x + x - 3 = 0$
 $3x^{2} - 6x + x - 3 = 0$
 $3x^{2} - 6x + x - 3 = 0$
 $3x^{2} - 6x + x - 3 = 0$
 $3x^{2} - 5x + 1 = 0$
 $x^{2} - 3x^{2} - 5x^{2} - 1$
 $3x^{2} - 5x^{2} - 5x^{2} - 5x^{2} - 5x^{2} = 0$
 $3x^{2} - 5x^{2} - 5x^{2} - 5x^{2} = 0$
 $3x^{2} - 5x^{2} - 5x^{2} - 5x^{2} = 0$
 $3x^{2} - 5x^{2} - 5x^{2} - 5x^{2} = 0$
 $3x^{2} - 5x^{2} - 5x^{2} - 5x^{2} = 0$
 $3x^{2} - 5x^{2} - 5x^{2} - 5x^{2} = 0$
 $3x^{2} - 5x^{2} - 5x^{2} - 5x^{2} = 0$
 $3x^{2} - 5x^{2} - 5x^{2} - 5x^{2} = 0$
 $3x^{2} - 5x^{2} - 5x^{2} - 5x^{2} = 0$
 $3x^{2} - 5x^{2} - 5x^{2} - 5x^{2} = 0$
 $3x^{2} - 5x^{2} - 5x^{2} - 5x^{2} = 0$
 $3x^{2} - 5x^{2} - 5x^{2} - 5x^{2} = 0$
 $3x^{2} - 5x^{2} - 5x^{2} - 5x^{2} = 0$
 $3x^{2} - 5x^{2} - 5x^{2} - 5x^{2} = 0$
 $3x^{2} - 5x^{2} - 5x^{2} - 5x^{2} - 5x^{2} = 0$
 $3x^{2} - 5x^{2} - 5$

(B)
$$2(5+3x^2) = 7x^2 + x - 2$$

 $10 + 6x^2 = 7x^2 + x - 2$
 $0 = 7x^2 - 6x^2 + x - 2 - 10$
 $x^2 + x - 12 = 0$
 $(x - 3)(x + 4) = 0$
 $x - 3 = 0$, $x + 4 = 0$
 $x = 3$, $1 \times - 4$
 $(3, 0), (-4, 0)$

In the previous unit, you had to determine a unique parabola given the *x*-intercepts and another point. Now you will write the quadratic equation based only on the *x*-intercepts. Manipulating the parameter *a* does not influence the value of the *x*-intercepts. Therefore, multiple quadratic equations exist. Consider the following equations resulting in *x*-intercepts -2 and 1.

Example 9:

Write two different quadratic equations in standard form having roots -3 and 3.

 $\gamma = 5(x + 3)(x - 3)$ $\gamma = 5(x - 9)$ $\gamma = 5x^{2} - 45$

Example 10:

Using Desmos, graph y = a(x - 2)(x - 8) for a = 1, 2, 3 and 4.

(A) What do these parabolas have in common?

(B) Does the same property hold when *a* is negative? Explain.

pTextbook Questions: page 411 - 413 #1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14