\qquad
8.2 Solving Problems Involving Rates

The focus here is to describe a situation in which a given rate might be used and is most useful. A situation to describe the rate $5 \$ / \mathrm{min}$, for example, could be a long distance phone call within Canada.

You will also be expected to determine the reasonableness of rates. If a student was having a party and trying to determine the number of slices of pizza per person, would it matter if the party was for a 3 year old as opposed to a teenager?

Answer questions such as if you are planning a road trip to Las Vegas:

- Is it reasonable to discuss a road trip to Las Vegas in terms of m / s ?
No. mss would be too large.
- What rate (s) could be used to describe this road trip?

$$
\mathrm{km} / \mathrm{h} \text { or } \mathrm{mi} / \mathrm{h}
$$

- What factors might affect your rate of speed on this trip?

- What factors might affect your fuel consumption?
- hills us. Fiat teria.h
- Speed
- weight
- Ape of vehicle

Example 1:
During a Terry Fox Run, student volunteers distribute 250 mL cups of water to participants as they cross the finish line. Each volunteer has a cooler that can hold $64 \underline{L}$ of water. How many cups of water can each volunteer dispense?

Example 2:
Loose-leaf paper costs $\$ 1.49$ for 200 sheets or $\$ 3.49$ for 500 sheets.
(A) What is the least you can pay for 100 sheets?

$$
\begin{aligned}
& \frac{\$ 1.49}{200 \text { stents }}=\frac{\$ 0.00745}{\text { sheet }} \times 100 \text { stents }=\$ 0.74 \\
& \frac{\$ 3.49}{500 \text { seats }}=\frac{\$ 0.00698}{\text { sweat }} \times 100 \text { seat }=\$ 0.70
\end{aligned}
$$

(B) 1600 sheets?

$$
\begin{aligned}
& \$ 0.00745 / \mathrm{slog} \times 16005 \text { beats }=\$ 11.92 \\
& \$ 0.00698 / \text { shot } \times 1600 \text { sects }=\$ 11.17
\end{aligned}
$$

Your turn:

1. Betty earns $\$ 463.25$ in 5 weeks. How much will she earn in 2 years?

$$
\frac{\$ 63.25}{5 w e r k_{s}}=\frac{\$ 92.65}{5} \times 52 w+2=\$ 9635.60
$$

2. A 12 -bottle case of motor oil costs $\$ 41.88$. A mechanic needs to order 268 bottles of motor oil. If he can only order by the case, how much money does he spend?

$$
\begin{aligned}
& \frac{268 \text { battles }}{\frac{12 \text { bottles }}{\text { case }}}=22.3 \text { cases } \sim 23 \text { cases } \\
& 23 \operatorname{copses} \times \frac{\$ 41.58}{\text { ease }}=\$ 963.24
\end{aligned}
$$

