Date: \qquad

8.4 Scale Factors and Areas of 2-D Shapes

In this section we will focus on the relationship between scale factor and area of similar 2-D shapes. Later in this unit, we will solve problems that involve scale factor, surface area and volume of 3-D objects.

How is area affected when the lengths of shapes are enlarged or reduced by a particular scale factor? Before we let's review the area formulae for some common shapes:

triangle h	$A=\frac{1}{2} b h$
rectangle \square \square	$w=I W$
square s	$A=s^{2}$
\square	s

Example 1:

Consider the following rectangle:

(A) What is the area of the rectangle?

$$
\begin{aligned}
& A=l \cdot \omega \\
& A=\left(b_{\mathrm{cm}}\right)(4 \mathrm{~cm}) \\
& A=24 \mathrm{~cm}^{2}
\end{aligned}
$$

(B) Increasing by a scale factor of 2 , what are the new dimensions and area?

$$
\begin{array}{ll}
l=6 \mathrm{~cm} \times 2=12 \mathrm{~cm} & A=l \mathrm{c}) \\
w=4 \mathrm{~cm} \times 2=8 \mathrm{~cm} & A=(12 \mathrm{~cm})(8 \mathrm{~cm}) \\
& A=96 \mathrm{~cm}^{2}
\end{array}
$$

(C) Increasing by a scale factor of 3, what are the new dimensions and area?

$$
\begin{array}{ll}
l=6 m \times 3=18 \mathrm{~m} & A=(18 \mathrm{~m})(12 \mathrm{cn}) \\
\omega=4 m \times 3=12 \mathrm{~cm} & A=216 \mathrm{rm}^{2}
\end{array}
$$

(D) Increasing by a scale factor of $\frac{1}{2}$, what are the new dimensions and area?

$$
\begin{array}{ll}
l=6 \mathrm{~cm} \times \frac{1}{2}=3 \mathrm{~cm} & A=(3 \mathrm{~m})(2 \mathrm{on}) \\
\omega=4 \mathrm{~cm} \times \frac{1}{2}=3 \mathrm{~m} & A=6 \mathrm{~cm}^{2}
\end{array}
$$

(E) What do you notice?

Original area: $24 \mathrm{~cm}^{2}$
Scale factor 2: $96 \mathrm{~cm}^{2} \quad \frac{96 \mathrm{~cm}^{2}}{24 \mathrm{~cm}^{8}}=4=2^{2}$
Sale Factor 3: $216 \mathrm{~cm}^{2}$
Scale factor $\frac{1}{2}: 6 \mathrm{rm}^{2}$

$$
\begin{aligned}
& \frac{216 m^{2}}{24 m^{2}}=9=3^{2} \\
& \frac{6 m^{2}}{24 m^{2}}=\frac{1}{4}=\left(\frac{1}{2}\right)^{2}
\end{aligned}
$$

You should observe that the resulting areas are not directly proportional to the lengths. When you double the sides of a rectangle, for example, the area does not just double, it quadruples.

It is important to recognize that the scale factor is applied to each dimension of the 2-D shape. As a result, the area will either increase or decrease by a factor of k^{2}. Therefore:

$$
k^{2}=\frac{\text { area of 2-D Shape }}{\text { area of original shape }}
$$

Example 2:
A 8 in by 12 in picture frame has dimensions that have been tripled. What is the area of the new frame?

$$
\frac{9}{1} \bar{x}=\frac{x}{96}
$$

$$
x=9 \times 96 n^{2}
$$

$$
x=864 i^{2}
$$

Example 3:
Chad and Charlene painted a mural on the wall, measuring 12 ft by 8 ft using an overhead projector. If the original sketch had an area of $216 \mathrm{in}^{2}$, what is the scale factor?

$$
\begin{aligned}
& k^{2}=\frac{\text { scale area }}{\text { orignularea }} \\
& k^{2}=\frac{13824 i^{2}}{216: 2^{2}} \\
& \sqrt{k^{2}}=\sqrt{64} \\
& k=8 \quad \text { Scale factor: } 8
\end{aligned}
$$

Textbook Questions: page $479-481 \# 1,3,4,5,6,8,9,11,12,13$

