\qquad
8.5 Similar Objects: Scale Models and Scale Diagrams

We will now extend our knowledge of scale factors and scale diagrams of 2-D shapes to scale factors and scale diagrams of 3-D objects.

We will use a scale factor to determine unknown measurements of similar 3-D objects.
At the end of the section we will be able to use a given scale factor to determine the unknown dimensions of a 3-D object.

Similar Objects - Two or more 3-D objects that have proportional dimensions.
Example 1:
The dimensions of a scale drawing of a patio chair are 2 cm by 1.5 cm by 4 cm , and a scale factor of 1:30 is applied. Determine the actual dimensions of the patio chair.

Example 2:
During an Art class, students are projecting the image of a can of Carnation milk on the wall. The projector applies a scale factor of 250%. If the can has a diameter of 10 cm and a height of 12.5 cm , what are the dimensions of the image on the wall?

$$
\frac{250 \%}{100}=2.5<\text { scale factor }
$$

$$
\begin{aligned}
& \text { diameter: } 10 \mathrm{~cm} \times 2.5=25 \mathrm{~cm} \\
& \text { height: } 12.5 \mathrm{~cm} \times 2.5=31.25 \mathrm{~cm} \\
& K=\frac{\text { scale }}{\text { or }} \mathrm{origin} \rightarrow \frac{2.5}{1}=\frac{x}{\frac{1}{10}} \quad \begin{array}{l}
x=2.5(10) \\
\\
x=25 \mathrm{~cm}
\end{array}
\end{aligned}
$$

Example 3:
Tony drew a scale diagram of his new skateboard to show a friend. He used a scale factor of 0.4. The scaled diagram has dimensions 3.2 in. by 1.8 in . by 10.8 in . What are the dimensions of the skateboard?

$$
\begin{array}{lll}
k=\frac{\text { scale }}{0 \text { original }} & & \\
\frac{0.4}{1} \mathbb{E} \frac{3.2 \mathrm{in}}{x} & 0.4=\frac{1.8 \mathrm{in}}{x} & 0.4=\frac{10.8 \mathrm{in}}{x} \\
\frac{0.4 x=\frac{3.2}{0.4}}{0.4} & x=\frac{1.8}{0.4} & x=\frac{10.8}{0.4} \\
x=8 \text { in } & x=4.5 \mathrm{in} & x=27 \mathrm{in}
\end{array}
$$

Textbook Questions: page 491-493 \#5, 6, 7, 8, 9, 13

